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Abstract

A new computer technique for the analysis of transport aircraft sonic boom signature

characteristics has been developed. This new technique, based on linear theory methods,

combines the previously separate equivalent area and F function development with a sig-

nature propagation method using a single geometry description. The new technique has

been implemented in a stand-alone computer program and has been incorporated into an

aircraft performance analysis program. Through these implementations, both configura-

tion designers and performance analysts are given new capabilities to rapidly analyze an

aircraft's sonic boom characteristics throughout the flight envelope.

The paper begins with a brief review of the elements of sonic boom theory embodied

in the analysis methods to be employed. Several candidate computer programs for each

analysis step were selected. These steps include: analysis of area due to volume, analysis

of equivalent area due to wing and interference lift, F function development and signature

propagation. Comparisons of the results of the selected analysis programs are presented.

Included in this study are the results of an effort to reduce the computer time required for

each analysis to a minimum without affecting accuracy. The process of linking the analy-

sis routines to create the new sonic boom module is then described. The capabilities of the

stand-alone analysis program, including the generation of boom data contours, are de-

scribed. The paper concludes with a study of the application of the new technique to the

analysis of two conceptual Mach 2.0 transport configurations. The boom signature shapes

and overpressure levels are calculated for both configurations on a typical minimum fuel

bum flight profile. New flight profiles are developed to reduce the climb overpressure lev-

els. The results indicate that the climb overpressures can be reduced to cruise levels with-

out significant performance penalties.
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I. Introduction

One of the important considerations in the design of a supersonic aircraft is the phe-

nomenon of sonic boom. Problems with public acceptance of sonic booms were partially

responsible for the cancellation of the United States SST program in the 1970's and the

prohibition of civilian supersonic flight over land. Since the end of the U.S. SST program

and the certification of the Anglo-French Concorde, most interest in sonic boom has fo-

cused on military aircraft. However, the recent identification of supersonic transport tech-

nology as a national research and development goal (ref 1) has prompted renewed interest

in the design of commercial supersonic aircraft and the sonic boom problem. Preliminary

studies by NASA, Boeing Commercial Airplanes and the Douglas Aircraft Company (ref

2) have indicated that there is a substantial market for a 250 -300 passenger supersonic

transport if certain key environmental and technological obstacles can be overcome. One

of the environmental obstacles is sonic boom. The aforementioned studies indicate that the

capability of supersonic flight over land would greatly expand the size of the market for

these transports. Currently, NASA is engaged in research to determine if there is sufficient

technological justification to warrant a concentrated effort to develop a low sonic boom

aircraft. As part of this research, several candidate configurations will be evaluated to de-

termine the behavior of shaped sonic boom signatures and the impact of the required con-

figuration shaping on the performance characteristics of such aircraft. In addition to the

requirements of this research, there is a need to evaluate the sonic boom characteristics of

any proposed supersonic aircraft configuration.

Research into methods to predict aircraft sonic boom has been going on for over 30



years.Theproceedingsof theFirst andSecondSonicBoomSymposia(ref 3 and4) indi-

catethatagreatdealof progresswasmadeduring theU.S.SSTprogram.Reference5 in-

dicatesthatapredictionmethodusingcomputerprogramsbasedon supersoniclinearized

theory("linear theory")wasavailablein 1970.A morerecentconferenceon thestatusof

sonicboommethodology(ref. 6) indicatedthatlinear theorymethodsarestill considered

acceptablefor Machnumbersin therangefrom 1.2to 3.0.Whenoriginally proposed,the

lineartheorymethodsweredescribedasrequiringprohibitively largeamountsof comput-

er time andwerenotconsideredpracticalfor applicationto completeconfigurationanaly-

sis.Sincethattime,thespeedof computershasincreasedby severalordersof magnitude.

Theseimprovementshaveprovidedanopportunityto assembletheseparateanalysesre-

quiredinto asingletool thattheaircraftdesignerandperformanceanalystcanuseto pre-

dict sonicboomoverpressureatkeypointsin theaircraftflight profile.Theseresultscan

thenbeincorporatedinto theassessmentof theoverallvehicleperformance.

Theresearchpresentedin this thesishadtwo mainobjectives:thedevelopmentof an

integratedoverpressurepredictiontoolandtheincorporationof this tool asamodulein an

aircraftperformancepredictionprogram.Figure 1(reproducedfrom reference5) illus-

tratesthebasicstepsnecessaryto computeasonicboomoverpressure.Sincethis method

wasproposed,manyimprovementshavebeenmadein theanalysismethodsusedatvari-

ousstagesin theprocess,but theonly realimprovementin theoverallprocessitself has

beenthereplacementof computercarddeckswith disk-basedfiles.Theunificationof the

requiredanalysistoolsunderacommongeometryformatwouldcompletelyeliminate

manualtransferof data-improvingboththespeedandaccuracyof thesonicboomanalysis

process.Linking thenewoverpressurepredictiontool with anaircraftperformancepredic-

tioncomputerprogramwouldprovidethecapabilityof analyzingclimb andcruiseover-

pressuresandfacilitate thedeterminationof flight pathmodificationsto minimize

overpressureon theground.

Thepresentationof theresultsof thisresearchprojectwill beginwith abrief reviewof

thetheoryembodiedin thepredictionof anaircraftsonicboom.This sectionwill focuson

providingabackgroundin thetypesof analysisrequiredto computea groundoverpres-



suregivenaircraftgeometryandflight conditions.Particularattentionwill bedevotedto

theportionsof theseanalyseswhichwill beaffectedby effortsto combinethem.The

backgroundsectionwill befollowed by thepresentationof theresultsof theevaluationof

severalcandidatecomputerprogramsfor eachrequiredanalysisstep.Candidatecomputer

programswereselectedfrom thosecurrentlyusedin thedisjointedprocessesof overpres-

sureanalysis.Theevaluationof theprogramsconcentratedongeometryanddatatransfer

requirements.Also addressedwereconcernsof accuracy,sophistication,andreductionof

requiredexecutiontime.

Following thereviewof candidateanalysistools,adescriptionof theprocessof as-

semblingthesetoolsinto asonicboomoverpressuremodulewill beprovided.Compari-

sonsof resultsfrom thenewoverpressuretool with previouslypublisheddatawill be

presented.Theprocessof integratingtheboommodulewith anaircraftperformancepre-

dictionprogramwill thenbedescribed.Thispaperwill concludewith anillustrationof the

applicationof thecombinedanalysistechniqueto thecomputationof theclimboutand

cruisesonicboomsfor twoMach2.0transportconfigurations.Thiswill includetheeffects

of two dimensionalmaneuversandmodificationof theflight pathto reducesonicboom

overpressure.



II. Review of Sonic Boom Prediction Theory

The phenomenon of sonic boom is a result of the presence of shock waves in the pres-

sure field surrounding an aircraft travelling at supersonic speeds. As shown in Figure 2

(ref. 5) the pressure disturbance from such an aircraft emanates in a conical region with a

half cone angle equal to the Mach angle. The intersection of the cone and the ground plane

defines a region where the effects of this pressure disturbance are felt. Figure 2 shows that

although the pressure disturbance or signature near the airplane can be very complex, the

effect on the ground generally takes the form of a pressure pulse with a distinctive N-like

shape. The exact shape of this pressure disturbance is influenced by many factors includ-

ing propagation distance, atmospheric turbulence and temperature gradients. The ampli-

tude of this N wave is largest along the center of the flight track. The initial pressure rise,

referred as Ap, is usually of the most interest. Off-flight track pressure signatures are also

used in the assessment of the overall impact of the sonic boom.

Since the sonic boom is caused by an aircraft-induced pressure disturbance, the most

accurate way of calculating the boom would be to accurately compute the pressure distri-

bution around the aircraft. Such calculations are now possible using advanced computa-

tional techniques. Computer time requirements and loss of resolution at large distances are

two problems that make these methods impractical for rapid application in an aircraft per-

formance prediction problem. For this reason, this research utilized the linear theory mod-

els.

Linear theory models for the prediction of the pressure field around a body at super-

sonic speeds are based on the work of Hayes (ref. 7), Whitham (ref. 8), and Walkden (ref.

4



9). Hayesproposedthatacomplexaircraftcouldberepresentedthroughtheuseof an

equivalentbodyof revolution.Thesourcestrengthof thepressuredistributionis propor-

tional to thesecondderivativeof thecross-sectionalareadistributionof theequivalent

body.Whitham'sworkprovidedamethodfor correctingfor thepresenceof shockwaves

aroundabodyof revolution.WalkdenextendedWhitham'swork to includelifting bodies.

Reference5 containsanexcellentreviewof theapplicationof this work to predictionof

sonicbooms.Theelementsof thetheorygermaneto thecomputertechniquesappliedin

thispaperarenowreviewed.

Thelineartheorymethodsarebasedondeterminingtheeffectivecross-sectionalarea

distributionof the equivalent body representing the aircraft configuration. This effective

area consists principally of area due to the volume of the body and equivalent area due to

lift. Other terms which may be included are the effects of boundary layer displacement

and engine exhaust plume expansion. Sketch (a) illustrates the build-up of body and lift

area. As shown in the sketch, the area due to volume is calculated as the forward projec-

Zo LI _ Lu'

X

sketch (a)
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tionof theareainterceptedby aplaneinclinedattheMachangle.Thefigureillustratesa

Machplanepositionedproperlytocalculatethearearequiredto determinethepressuredi-

rectlybelowtheaircraft.This Machplaneorientationangleisreferredto as0= -90°. The

totalareaduetovolumeis determinedby calculatingtheareaof a seriesof Machplanein-

tersectionscuttingthebodyfrom noseto tall. Theequivalentareadueto lift isdetermined

by asummationof thelift forcesonincrementalelementsof the lifting surfaces.Thepoint

of actionof a unit of lift is determinedby aMachplanewhich intersectsboththepoint

wherethelift is generatedandthereferenceplane.This is shownin sketch(a) for asmall

sectionof anairfoil. This illustrationindicatesthatdisplacementsof a lifting surfacedue

to camber,thicknessanddihedralchangetheshapeandlengthof thecurveof equivalent

areadueto lift.The incrementallift forcesarecumulativealongthelongitudinalaxis.This

meansthattheequivalentareafor anypoint on theaxisis proportionalto theincremental

lift atthatpoint addedto thetotal lift forwardof thatpoint.Theconstantof proportionality

betweenthelift andtheequivalentareais

13 sin0
2q

The lift forces include the lift generated by wings, tails and canards, and can include inter-

ference effects due to the presence of nacelles and other bodies.

_= 0 ° 0_>0 °

f _/_>0 °

.  o0o
X

sketch (b)
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Thetotal equivalentarea(volumeandlift) is alwayscalculatedona line which is par-

allel to thevelocity vectorof theairplane.Becauseof this,angleof attackaffectsthe

lengthandshapeof theequivalentareadistribution.Consideringareadueto volume,in-

creasingangleof attackwill increasethemaximumcrosssectionalareawhiledecreasing

theeffectivelengthof theareadistribution.Thiseffectis illustratedin sketch(b)which

showstheareacurvesfor aconfigurationat zeroandpositivealphas.Thedifferencein the

areacurvesis exaggeratedfor thepurposeof illustration.Theeffectof angleof attackin

theequivalentareadueto lift is illustratedin sketch(c). Notethat thisfigureillustratesthe

_, Horizontalreference

/ axis
i /

-"**_'**_-_ _ tL Aircraft reference

_ aXlS

sketch (c)

ua

(Z > 0°--.__/'_

//f//_"" Ct=

tt

_JI l

X

0

! |

difference between including angle of attack or not. This should not to be confused with

the effect of increasing angle of attack, which of course results in increased lift. The figure

shows that the aircraft angle of attack tends to rotate the aircraft reference axis away from

the horizontal reference line, along which the equivalent area is measured. Since the lift is

always perpendicular to the velocity vector, the magnitude of the lift is unchanged. How-

ever, the point where the lift acts, and therefore the length and shape of the equivalent lift

area curve is affected.

Once the effective area curve has been calculated, this information is used to develop

the Whitham F function

1 ! Ae" ds=

where x is a point on the equivalent body axis. A technique for performing this integration

7



numericallyis presentedin reference10.TheF functioncanthenbeusedto computethe

pressuresignature,includingthelocationof shockwaves.Reference7 describesa graphi-

cal approachto solvingfor thepressuresignature.A numericalprocedure,suitablefor ap-

plicationto complexaircraftconfigurationis describedin reference11.In simpleterms,

themethodis describedby sketch(d)(from ref. 11).TheF functionis convertedto a"tilt-

ed" F function, F ('¢t) by the transformation

In this transformation, the k term accounts for effects of Mach number, and the r term

for distance from the aircraft to the signature.The location of shock waves is determined

by applying an area balancing technique to the tilted F function. The area balancing tech-

A e

F

//_ Area

X

function

F(xt ) _ "Tilted" F function

Apex _ Pressure Signature

x ort

sketch (d)

1
nique is performed graphically by passing lines of slope-:-- w through the F (%)

tc4r

curve



such that lobes of equal area are created. In the numerical method, the area balance points

are found by integrating the curve F (xt) and locating points where the resulting function

crosses over itself.

The solution described above is valid only in a uniform atmosphere. In a real atmo-

sphere, the pressure signature is distorted by temperature gradients, atmospheric winds

and turbulence. When considering an aircraft in flight, any maneuvers made by the aircraft

will also impact the propagation of the pressure signature.

Several methods have been developed to account for the effects of a real atmosphere

and determine the resulting pressure signature at the ground. References 12 and 13 de-

scribe two of these methods. Both are based on the theory of geometrical acoustics. This

theory, like its counterpart, geometrical optics, makes use of the concept of rays. In geo-

metrical acoustics, the rays represent a trajectory of points moving in space, tracing the

pressure signature propagation through the atmosphere. Sketch (e) (reference 13) illus-

/

to _j flight path t 1

lllm_mlWo_O, H,....,..,**,..,,.,,..,.,....., ....,. ,.. °., ,..., .................... . ....... .,.,...,**...,..,.... .....

'_'" "'" Mach con,ray paths _..'..."...

"'::::£'..."... Mach cone

;. ".. "_ ground track
"....._.o

tl

sketch(e)

trates that a sonic boom heard on the ground at time t 1 is actually generated by the aircraft

at some earlier time to . The boom signature has propagated along rays which are affected

by the characteristics of the atmosphere.

The changes in pressure and temperature in the atmosphere have an effect analogous

9



to refractionin geometricaloptics.Thisrefractionbendstherayssothattheygenerally

curveupwards.Thefact thattherayscurvehastwo importantimplicationson theground

overpressure.Thesearethephenomenaknownas"cutoffs". Thefirst cutoffphenomenon

occursat near-supersonicspeeds.At thesespeedsthereexistsarangeof flight conditions

for whichtherayswill curvecompletelyupwardbeforereachingtheground.Thusanair-

craft travellingat thesespeedswill producenoboomon theground.Thesecondcutoff

phenomenonis thatof the lateralcutoff. Raysthatemanateperpendicularto theaircraft

flight trackarealsocurvedupward.At acertainlateraldistance,all of therayswill have

curvedcompletelyupwardandthusbeyondthatdistance,noboomwill beheardon the

ground.Theexceptionis thecaseof secondarybooms.Thesebooms,causedby refraction

of rayspropagatingupwardfrom theaircraftarenotconsideredin this thesis.(Seerefer-

ence6).

Anotherimportantconceptin theapplicationof geometricalacousticsis thatof theray

tube.Theray tubecanbevisualizedasagroupof raysgeneratedattimesseparatedby a

small increment.Theareaof theray tubeis usedto determinehow theacousticenergyof

thesignaturevariesduringthepropagation.As in geometricaloptics,conditionsexistthat

cancausefocusingof thepropagatingrays.A surfacein spacewheretheray tubeareabe-

comeszerois termeda"focus" or"caustic".Themagnitudeof theoverpressureatafocus

canbemorethan2.5timesthatof anormalboom.Thetheoryof geometricalacoustics

cannotbeappliedto predictingtheoverpressureatafocus.Aircraft maneuvers,including

accelerations,pushoversandturnscancausetheray focusingandpotentialcaustics.

Althoughby nomeansacompletetreatiseon thesubjectof sonicboomprediction

methods,thisreviewis intendedto covertheprincipal theorybehindthecomputerpro-

gramsthatwill becombinedto form thesonicboommodule.Thefollowing chapterwill

focuson thedetailsof theseprograms.
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III. Selection of Analysis Methods

This chapter is devoted to a discussion of the study and selection of computer routines

to perform the analysis required in the sonic boom overpressure module. Referring to fig-

ure 1, it can be seen that there are three types of analysis to be carried out with the help of

computer programs. These are: calculation of area due to volume, calculation of equiva-

lent area due to lift, and extrapolation of the pressure signature through the atmosphere.

For the first and last of these analyses, there was a limited selection of candidate computer

programs available. The process of computing the area due to volume is used only in wave

drag and sonic boom analysis. For the extrapolation process, only two methods have been

implemented in computer programs.

On the other hand, there are numerous programs available to calculate wing lift using

linear or modified linear theory. However, there are only a very few that have been modi-

fied to convert the calculated pressure distribution to the lift equivalent area distribution

necessary for determining sonic boom. For expediency, the decision was made to consider

only those programs that were so modified and documented. In each case, the programs

are shown to provide reasonable agreement with the lift and drag components measured in

wind tunnel tests. Therefore, in the realm of linear methods, it was not deemed productive

to initiate detailed comparison studies, particularly if a program required extensive modifi-

cation to calculate the necessary sonic boom lift distributions. In addition, the methods se-

lected have all been applied in studies such as those described in reference 14. In these

studies, comparisons were made with wind tunnel measured near field pressure signatures,

yielding good results for a number of different configurations.

Although the above conditions greatly reduced the number of candidate analysis tools,
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severalcomparisonsremainedin theprogramselectionprocess.For eachstepin thesonic

boomanalysis,thecandidateprogramswerestudiedandcomparedtoidentify potentialer-

rorsor weaknessesin themethodandassociatedprogram.This involved makingnumer-

oustestrunsof theprograms,exercisingtheoptionsavailablein each,andtestingseveral

differenttypesof geometries.While longandinvolved,thisproceduredid identify several

programmingerrorsin thecandidateprograms,anduncovereddeficienciesin themethods

of othersthatmadethemunsuitablefor usein theoverpressuremodule.Perhapsmostim-

portant,thecomparisonprocessprovidedtheauthorwith a goodworkingknowledgeof

eachprogram.Thisprovedvaluableduring thelaterprocessof integratingtheselected

programsinto theoverpressuremodule.A largepartof theanalysisof thecandidatemeth-

odsfocussedondetermininghow to performeachanalysisin theminimumcomputerexe-

cutiontimewhile introducingonly smallaccuracylosses.Executiontimewill become

importantwhenapplyingtheoverpressuremodulein aircraftperformanceanalysis.At this

point,manyanalyseswill berequired.Minimizing thetimeexpendedoneachanalysis

will keeptheoveralltimerequirementsreasonable.

Analysis of Area due to Volume

Thecalculationof areadueto volumeinvolvesdeterminingthecrosssectionalarea

cutwhena Machplaneis passedthroughtheconfiguration.Thisprocessis partof thecal-

culationsmadewhencomputingsupersonicwavedragandhasbeenimplementedin sev-

eralcomputerprograms.Threecandidateprogramswereselectedbecauseof their

widespreadusein configurationanalysis.Thethreeprogramsareall derivedfrom the

techniqueoutlinedin reference15andaresimilar in mostrespects.Thereareseveraldif-

ferencesthatdistinguishthemethodsandthesewerestudiedbeforeaselectionwasmade.

Thefirst of thesedifferencesconcernedgeometrymodelling.Thegeometryformatde-

scribedin reference15allowsthefuselageto bemodelledonly asanuncamberedbodyof

circularcrosssection.This geometryformatwaslatermodified(ref. 16)to allow for cam-

beredcircular fuselagesandfor fuselagesof arbitrarycrosssection.This is thegeometry

formatusedin thefirst two candidateprograms.Thethird program(ref. 17)usesacom-

pletelyarbitraryformat.In this format,thex, y, andz coordinatesof thepointsdescribing
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thecontoursof all componentsareinput.This allowsfor componentcontourswith differ-

entorientationsandprovidesthecapabilityof modellingmoreunconventionalconfigura-

tions.This formatis alsoeasilyadaptableto theLAWGS(ref. 18)geometryformat.An

investigationof the impactof thesedifferentgeometryformatsontheresultsfor areadue

to volumewasconducted.Figure3illustratestheMach3.0configurationfrom reference

19modelledwith acamberedcircularbodyandablendedbody.Theblendedbodyconfig-

urationwaspreparedin boththearbitraryfuselage(methodsoneandtwo) andcomplete

arbitrarygeometryformats(methodthree).Thecircularbodyformat (methodsoneand

two) is popularin configurationanalysisbecauseof theeasewith whichthebodyradius

canbevariedto determinetheareadistributionrequiredfor theminimumwavedrag.The

blendedbodymodellingis becomingmoreimportantbecauseof theneedfor geometry

compatibilitywith advancedaerodynamicmethods.Theprimary goalin sonicboomanal-

ysis is to properlymodelthecrosssectionalareabuildup.Figure4 showsthatthis is pos-

siblewith all threegeometryformats.Thefigurecomparesthecalculated0 = -90 ° area

distributionsfor theMach3.0configurationmodeledin all threegeometryformatsat

Machnumbersof 1.4and3.0.Theagreementis verygoodin all cases.Theresultsfor the

blendedfuselagegeometryandcompletelyarbitrarygeometrymodelsappearto overlay

exactly.Figure4 illustratesresultsfor thecombinedareasof thefuselage,wing andfins.

Figure5 showsthatanerrorwasdiscoveredwhennacelleswereaddedto thegeometry.

Althoughtheoverall agreementwasstill quitegood,thereseemedto beafairly significant

differencein theresultsfor thenacelles.Thiswastracedto anerrorin computingtheinlet

captureareain theprogramof reference17.Thecaptureareais thecircularcrosssectional

areaof thenacellesandcanbecomputedexactlywith little trouble.A brief reviewof the

logicof theprogramdid not yield thesourceof thiserror.A moredetailedanalysisis war-

rantedbut is beyondthescopeof thiswork.

Theseconddifferencebetweenthethreecandidatevolumemethodsconcernstheef-

fectsof angleof attack.As previouslydiscussed,changingangleof attackaffectsthe

shapeandlengthof theareadueto volumedistribution.Becauseof the limits of their ge-

ometryformat,thefirst two candidatemethodsareforcedto makeanapproximationto
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thiseffect.Theeffectivelengthandareaaremodifiedasfollows:

sin (g. - a)
X t =XX

sinl.t

A'(x) =A(x) x
sing.

sin (g. - a)

Because the third method is dependent only on x,y, and z coordinates, an exact transforma-

tion of the geometry can be made. For a given reference of rotation, this transformation is

x' = (x-x r) cosa- (z-z r) sina

z" = (x-x r) sina+ (z- z r) cosa

The effective length and area are computed based on the transformed coordinates.

Concern had been expressed that the approximate method may not be sufficiently accurate

when dealing with cambered fuselages. An investigation of these effects was performed

using the fuselage of the Mach 3.0 configuration and the fuselage of the Mach 2.7 config-

uration of reference 20. The two fuselages are shown in side view in figure 6. Note that

both are severely cambered with the Mach 2.7 configuration having a considerable z dis-

placement at the aft end of the fuselage. The 0 = -90°area distributions were computed

for a Mach number of 1.4 at angles of attack of 2.0. 4.0 and 10.0 degrees. The results,

summarized in figure 7 for the Mach 3.0 configuration and figure 8 for the Mach 2.7 con-

figuration, indicate no major errors due to the difference in the angle of attack computa-

tions. It may be noted here that the cruise flight angle of attack for supersonic transport

vehicles is usually low. When analyzing area distribution at severe off-design conditions,

care must be taken to not let the angle of attack exceed the Mach angle.

Another area of concern for volume calculations involved a difference in the method

of computing the area of lifting surfaces. In the program of method one, the area of lifting

surfaces is divided into a set of three dimensional solid elements. In computing the Mach

plane sliced area, each element is checked for intersection with the current Mach plane

and if an intersection exists, the area is computed. The second method approximated the

lifting surface as a two dimensional grid, with each element having a constant thickness.
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This approximationwas made to reduce the computational requirements from those of

method one. Approximation can lead to an error in the computed area when a cambered

lifting surface is considered. The magnitude of this error for a 0 = -90 ° area distribution

is shown in figure 9. When all 0 values are considered, the errors due to camber are self-

cancelling and have little effect on the computed wave drag. However, for sonic boom cal-

culations, the results are unacceptable.

The final consideration given to the three candidate volume programs concerned the

required execution time. The program of method one, originally very computational in-

tense, had recently undergone a major logic restructuring, which greatly reduced its execu-

tion time. To compare execution times, the volumes for two different geometries were

calculated. The geometries selected were the previously described Mach 3.0 and Mach 2.7

transport configuration. For each geometry, the volume calculations were performed for

two different numbers of area cuts along the body axis. The programs used in this compar-

ison were the original and new versions of method one and the programs of methods two

and three. Table 1 presents a comparison of the required execution times. All times pre-

sented are typical results from an advanced workstation computer. The results show that

the modified version of method 1 is approximately 50% faster than method 2. It is also as

much as 10 times as fast as method 3.

As a result of all of the above comparisons, it was possible to select one program for

the calculation of area due to volume. Method two had to be eliminated immediately due

to the discrepancy in volumes of cambered lifting surfaces. Although method three had the

small error in the nacelle volume calculation, it was still desired to use this program be-

cause of its connection to more detailed geometry formats. Unfortunately, the execution

times for this program were much too long. It may be that a logic restructuring effort such

as applied to method one would produce considerable reduction in the execution time.

However, for the purpose of this research, it was decided to use the improved version of

method one as the volume calculation tool.

Analysis of Equivalent Area Due to Lift

The determination of the equivalent area due to lift involves calculating the complete
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distributionofliftingforceover the surfaceofthe wing. For thepurpose of thiswork, only

theliftcomponents due towings and nacelleinterferencewere considered.The discussion

of candidatemethods forthesetwo components willbe presentedseparately.

Wing Lift Analysis

The analysis of the wing lift distribution can be carded out by any one of a number of

methods for predicting the wing lift. There were two programs available that had been

modified to perform the necessary summation and produce the lift equivalent area distri-

bution. The first of these programs is a linear method for computing flat plate and camber

lift of a wing with arbitrary planform. (ref. 21,22). The second is an extended linear meth-

od with an estimation of non-linear effects (ref. 23). This program calculates the fiat plate,

camber and thickness lift components. The principal advantages of the linear method were

simplicity of input data requirements and short execution time. The modified linear meth-

od provides for estimation of certain non-linear effects such as wing root and three dimen-

sional flow. This additional detail comes at the expense of slightly more complex input

and increased execution time.

Both programs utilize the "Mach Box" method of representing the wing geometry and

solving the linear theory equations. In this method, the wing platform is divided into a

large number of rectangular elements. The surface slope of each element if then calculated

and used to determine the local pressure coefficient. The calculation of the pressures takes

into account the pressure results in the upstream region of influence. The second of the

methods performs a considerably more detailed analysis. Rather than calculating the pres-

sure coefficient directly, the program first calculates velocities and potential function val-

ues for each element. This includes both longitudinal and lateral velocities with flat plate,

camber and thickness components. A non-linear correction term is applied to the velocity

components, resulting in lift forces which are non-linear with angle of attack. The details

of the procedures used in each method are available in the references.

The use of the "Mach box" approach as a basis for computing the required lift distribu-

tion and the non-linear character of the modified linear method results were two important
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considerations in the evaluation of these methods.

The rectangular element grid representation of the wing planform used in the Mach

box method is a fundamental part of developing the lift area distribution. When the lifting

solution is complete, the pressure coefficient on each of these elements is known. These

pressure coefficients can then be summed to determine the lift area distribution. The meth-

od and amount of detail used during this summation is a major difference between the two

methods being considered. The difference manifests itself in the methods used to deter-

mine the effects of displacements due to camber, dihedral and angle of attack in the lift

area distribution.

In its original form, the linear method calculated only fiat plate lift components. Al-

though extended to include camber lift effects, the method was not modified to include the

effects of the displacements due to camber and angle of attack. An approximation for the

camber and dihedral was developed using the displacements of the wing trailing edge rel-

ative to the reference origin to modify the length of the lift area curve. Referring to sketch

(f) part a, the quantities z and Cloca I are computed for each defined airfoil. The weighted

average is computed by summing over the number of airfoils

(clocat)Xz )

Zavg = ___ Clocal

ZavgiS then used to displace the line of lift action. This displacement is included with

the calculation of displacement due to angle of attack. As illustrated in sketch (f) part b,

the relationship between a point x on the line of lift action and a point x' on the reference

axis of equivalent area due to lift is given by

X B (x z)- tan(I.t-oO x

sin (_t - oO

sino_
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Themodifiedlinearmethodtakesaconsiderablydifferentapproachto thecalculation

origin _.
_._... ....... de"

............................... , camber line
......................_ airfoil ref. lin_

aircraftreferenceline

(a)

J

[L horizontal reference line

x' /'
_.t aircraft reference line

/_ L_za vg

(b)

sketch(f)

of the above mentioned effects. The calculations are performed at the time of computation

of the pressure on the individual Mach box elements. A somewhat simplified explanation

of the procedure used is illustrated in sketch (g). Consider an element of lifting surface P

which is displaced from the aircraft reference axis by the amount z. This displacement can

include camber, thickness and dihedral. From the known pressure information, an incre-

mental lift element L is calculated for P. The aircraft axis is rotated by the angle of attack

CCfrom the horizontal reference plane which is set up with a summation grid starting at the

origin. The geometry is used to determine the position on the summation grid of the point

of action of the incremental lift force L'. This procedure is repeated for each element mak-

ing up the upper and lower surfaces. Each lift increment is added to the others with the

same point of action. When the summation is complete, the equivalent area due to lift is
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accuratelyknown.

horizontalreferenceplane
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sketch (g)

Owing to the fact that the two methods for including displacement and angle of attack

are intricately part of the individual programs, it is difficult to demonstrate clearly the dif-

ference in the two procedures. The purpose of the above was to illustrate one of the overall

differences in the linear versus non-linear methods. The comparison of the overall results

of the two methods will be shown in later discussions. It is, however, interesting to exam-

ine the results for including angle of attack individually in each of the methods. This was

done for both the Mach 2.7 and Mach 3.0 configurations previously discussed. Figure 10

shows the results for the Mach 2.7 configuration at 60,000 foot altitude, O_= 2.0 deg. Fig-

ure 11 shows similar Mach 3.0 results at 65,000 foot altitude and _ = 2.0 deg. In both fig-

ures, part a shows the linear results and part b those from the modified linear method.

Although 2 degrees is a relatively small angle of attack, it was chosen because it repre-

sents a typical cruise angle of attack for a supersonic transport. Despite the fact that the an-

gle is small, the effect on the lift distributions is clear in all cases. As expected, including

angle of attack shifts the lift distribution forward while the maximum equivalent area re-

mains unchanged. The magnitude of the shift in the lift distribution appears to be similar

for both the linear and modified linear methods.

Before proceeding to the comparison of the overall results of the two methods, an at-

tempt was made to reduce to a minimum the execution time required by both methods.

The parameter that seemed to have the greatest effect on execution time is one that con-
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trois thenumberof chordwise strips into which the wing is divided and through this, the

total number of Mach box elements used in the solution. The study of reducing execution

time focused on determining how far this variable, named JBYMAX, could be reduced

without affecting the resulting equivalent area distributions. Once again, the Mach 2.7 and

3.0 configurations were chosen as the test geometries. In this study, two Mach numbers

were examined for each configuration. The total number of Mach box elements is a func-

tion of the Mach number, JBMAX and configuration geometry. Therefore, due to limits on

program array sizes, the maximum value for JBYMAX varied with both Mach number

and configuration. For each configuration, a series of calculations for varying JBYMAX

was made at each of the two Mach numbers. Figures 12 and 13 show the results for the

Mach 2.7 configuration while figures 14 and 15 show the Mach 3.0 results. The weights

and altitudes were selected to match potential flight conditions. Table 2 contains the pro-

gram execution times required to generate the data in the figures. The times shown indi-

cate the large differences in execution requirements between the linear and non-linear

methods. In all of the high Mach number cases, substantial savings of execution time

could be realized with little impact on the resulting equivalent area distributions. At Mach

1.4, the results were different for the two methods. The results for the Mach 2.7 configura-

tion, using the modified linear method, are much the same as the high Mach number data.

For the other Mach 1.4 cases, it can be seen that a certain amount of waviness is present in

all of the results. This waviness becomes very significant as JBYMAX is reduced from the

maximum value for each method. The waviness is due to oscillations in the pressure coef-

ficients resulting from sparsity of data for the smoothing routines. This is particularly true

for the linear method, which has limited smoothing capabilities and considerably smaller

array sizes.

The studies of the effects of angle of attack and JBYMAX sensitivity provided suffi-

cient background information to support the overall comparisons of the linear and modi-

fied linear methods. The objective of these comparisons was to determine the trade off

between the shorter execution time of the linear method and the improved accuracy of the

modified linear method. To provide an accurate assessment of this trade off, it was neces-
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saryto computethelift distributionsfor differentgeometriesoverarangeof Machnum-

bersandanglesof attack.Thefirst geometrytestedwasthereferencearrowwing

geometryfrom reference14.Thisgeometry,shownin figure 16,wasselectedbecauseit

representeda simpleuncamberedwing andwouldprovideabaselinecomparisonof the

two methods.ThepreviouslydescribedMach2.7andMach3.0configurationgeometries

werealsousedin thecomparisonstudies.Thecompletegeometryfor theMach2.7config-

urationis shownin figure17.Notethatthewinggeometryfor thisconfigurationis similar

to thereferencearrow wingexceptfor theadditionof camber.Usingthisgeometrywill

provideanestimateof differencesin thecamberanalysesof thetwo methods.Machnum-

bersfor this studyrangedfrom 1.2(numericallythe lower limit for linearmethods)up to

thedesigncruiseMath numberfor eachconfiguration.Altitude andweightwereheldcon-

stant,which producedasufficientvariationof angleof attackovertheMachnumber

range.Theresultsof thecomparisonsaresummarizedin figures18,19and20.Thecorre-

spondinganglesof attack,JBYMAX andprogramexecutiontimesareshownin table3.

For theuncamberedwing, theagreementwasverygoodfor all Machnumbersexcept1.2.

At Mach1.2,thepreviouslydiscussedoscillationsandanunder-predictionof lift areaare

noticeablein the linearmethodresults.Table3 showsthatin all of the linearMach 1.2re-

suits,programarraysizerestrictedJBYMAX to 10.Theresultsfor theMach2.7configu-

ration at Mach1.2indicatedanunacceptableamountof under-predictionandoscillation

for thelinearmethod.TheresultsatotherMachnumbersindicategoodagreementof the

overallshapeof theequivalentareacurves,with thelinearmethodunder-predictingthe

lift on theforwardportionsof thewing.Theresultsfor theMach3.0configuration(Mach

1.2excluded)in generalshowgoodagreementin bothshapeandmagnitudeof theequiv-

alentareacurves.It appearsthatthemodifiedlinearprogrampredictsaslightly higherval-

ueof lift on thehighlysweptinboardportionof thewing.Thisresultsin the 'bump' in the

modifiedmethodequivalentareacurve.

Theoscillationandsevereunder-predictionpresentat Mach1.2werefound to almost

completelyvanishwhentheMachnumberwasincreasedaboveMach 1.4.Theexecution

timeresultsindicatethatif someinaccuracycanbetolerated,the linearmethodis substan-
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tially fasterthanthemodifiedmethod,particularlyfor Machnumbersbetween1.4and2.0.

Someof this time savingsdisappearsatthehigherMachnumbers.

Analysisof all of thecomparisonsmadebetweenthetwo methodfor computingthe

equivalentareadueto winglift indicatesthatthemodifiedlinearmethodis thebetterfrom

thestandpointof accuracy.However,therapidexecutiontimeof the linearmethodcould

bevery importantwhencomputingthemanyflight pointsrequiredfor analyzinganair-

craft climb profile.Becauseof theseconflictingrequirements,it wasdecidedto include

bothmethodsin thesonicboommodule.Thedecisionof which methodto usecouldthen

bebasedon theactualoverpressureandsignatureshaperesults.Of course,the linear

methodwouldhaveto berestrictedto Machnumbersgreaterthan1.4unlesstheoscilla-

tioncouldbeeliminated,perhapsthroughan increasein programarraysize.

Interference Lift

The secondlift componentto beconsideredwasthatof interference due to the pres-

ence of nacelles or pods under the wings. At supersonic speeds, the shock wave pressure

field of the nacelles can have a significant impact on the pressure distribution of the lower

surface of the wing.

Figure 21 presents examples of how much of the overall lift can be contributed by this

shock induced lift component. The figure shows the wing and interference lift contribu-

tions to the equivalent area distribution for two configurations at different altitudes and to-

tal lift. In the case of the four nacelle Mach 2.7 configuration, the contribution of

interference lift is small. The opposite is true for the six nacelle Mach 3.0 configuration.

This figure is intended to convey that the impact of interference lift on the total equivalent

area distribution is dependent on Mach number, altitude, total lift and configuration shape.

A method for calculating this interference pressure and the resulting effect on the sonic

boom lift equivalent area distribution is described in reference 24. The method has numer-

ous similarities to the methods for computing wing lift previously described, and was

therefore a natural candidate for inclusion in the sonic boom module. The analysis of this

program concentrated on exercising the program over a range of Mach numbers to deter-
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mineif therewereanypointswheretheresultsbecomeunreasonable.The effects of at-

tempts to reduce the required execution time on the accuracy of the results was also

studied. Finally, a series of comparisons of equivalent area distributions with and without

interference were performed.

In the course of exercising the program over the range of Mach numbers, the discovery

of anomalous results was traced to an error in a part of the program which sums interfer-

ence pressures. The error was corrected and any affected results were recalculated.

The interference lift method is similar to the wing lift programs previously described.

There is a program input similar to JBYMAX which controls the total number of spanwise

elements on which the interference pressures are calculated. As before, the study of the ef-

fects of reducing execution time focused on varying this parameter. The results of this

study are summarized in figures 22 and 23 and table 4. These figures show interference lift

equivalent area distributions for the Mach 2.7 and Mach 3.0 study configurations. Results

for two Mach numbers are presented with the corresponding execution time presented in

the table. Varying JBYMAX from 50 to 20 resulted in some variations in the equivalent

area distributions. There was no noticeable trend in the changes of results, nor did the re-

duced JBYMAX produce any instability or waviness in the results. The conclusion

reached was that significant reduction in execution time could be achieved without sacri-

tieing accuracy by reducing JBYMAX to approximately 30.

The final part of the study of lift analysis tools examined the differences in the total lift

equivalent area distributions computed using wing lift alone and those computed using

wing and interference lift. Figure 21 illustrates how the wing and interference lift compo-

nents combine to produce the total lift. If the interference component is not computed, the

total lift will be made up by having the wing fly at a slightly higher angle of attack. The re-

sult of this will be a differently shaped lift distribution. The magnitude of the difference

will depend on how large the contribution of interference lift was. Lift equivalent area dis-

tributions were computed for the two study configurations over a range of Mach number,

altitude and lift values. The results of this study are shown in figures 24 and 25. Table 5

contains the resulting angles of attack and sample execution times. For the Mach 2.7 con-
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figuration,theeffectsof includingtheinterferencelift weregenerallysmall.Theeffects

weresomewhatlargerfor theMach3.0configuration,especiallyatlower altitudesand

lifts. In all cases,therequiredexecutiontimewassignificantlyreducedif the interference

lift wasnot computed.

Summary

The study of methods for determining lift equivalent area distributions revealed both

strong and weak points in each candidate method, and did not completely eliminate any

one method. Obviously, the results for the linear method are unacceptable below Mach

1.4. However, when computing the overpressure for numerous points along a climb pro-

file, it may still be desirable to use this method to reduce the required program execution

time. At this point, it was not possible to make judgments as to how much the difference in

equivalent area distributions would affect the final sonic boom overpressures and signa-

tures. This can be determined once the lift computation routines have been integrated into

the complete overpressure module. It was considered possible that there would always be

a trade off between execution time and accuracy of results. Therefore, it was decided to in-

clude all three methods and provide a user option for which program to use. The verifica-

tion of the performance of the complete module will further address the ramifications of

using one method over another.

Pressure Signature Extrapolation

The final analysis tool required for the sonic boom module is used to extrapolate a pre-

viously computed pressure signature for the aircraft's position on the ground. There are

two candidate methods for this process, both discussed previously. The computer pro-

grams that have been developed using these methods are commonly known as the ARAP

(ref. 12) and Thomas (ref. 13) methods. The principal difference in the methods is related

to how they account for non-linear effects in extrapolating the signature. The ARAP meth-

od essentially performs the extrapolation using the method described in sketch (e) The dif-

ference is that the F function shape is modified to include the atmospheric effects. The

Thomas or Waveform Parameter Method determines the extrapolation effects using a pre-

viously calculated near field pressure signature. This provides the additional capability of

24



usingmeasurednear-fieldcharacteristicsto initiateagroundpressuresignaturecalcula-

tion.

As originally written,neitherprogramcoulddirectlyusethetotalequivalentareadis-

tributionasinput.TheARAPprogramhassincebeenmodifiedto includeaversionof the

methoddescribedin reference10.This techniqueis usedto convertaninputequivalent

areadistributionto anF function,which is thenfedto theextrapolationlogic.For theTh-

omasprogram,therequiredpressuresignatureinputcanbeprovidedby anapplicationof

themethoddescribedin reference11.This methodessentiallycomputesanF function

basedon totalequivilantareadistributionandthenusestheuniformatmosphereextrapo-

lationtechniqueto find thepressuresignaturea shortdistancefrom theaircraft.This pres-

suresignaturecanthenbesuppliedto theThomasprogram.The"short distance",usually

expressedasamultipleof thelengthof theaircraft,is avariablewhich is notspecified

clearlyin anyof thereferences.Thedistanceshouldbelargeenoughfor theassumptions

of lineartheoryto bevalid, but notso largeasto excludea significantamountof real at-

mosphereeffects.

Thesimilaritiesin theARAP andThomasmethodsseemedto indicatethatthere

wouldbelittle differencebetweentheresultsfrom thetwo methods.Thecomparisonsof

thetwo methodsfocusedonproving thisassumptiontruefor awiderangeof flight condi-

tions.In addition,it wasdesiredto determineif oneprogramhadsignificantexecution

time advantageovertheother.

TheMach3.0configurationgeometrywasselectedfor thisstudy.Thevolumeanalysis

andmodifiedlinearlift analysisprogramspreviouslydiscussedwereusedto generatease-

riesof totalequivalentareadistributionsfor arangeof Machnumbersandaltitudes.These

werethenusedasinput for bothextrapolationprogramsto computetheresultingground

overpressuresbasedonsteadylevel flight conditions.Theresultsof this studyaresumma-

rizedon figures26,27and28.Eachfigure showsthecalculatedgroundoverpressuresig-

naturefor aseriesof altitudesat Mach3.0,2.0and1.2respectively.Thestandardmethod

for representinga sonicboomsignatureis to plot thechangein pressurefrom existing

conditionsversusthelengthof thepressurewaveor timeof occurrencerelativeto asta-
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tionaryobserver.All of thefiguresin thisreportusedistanceastheindependentvariable.

Thepressurevaluesshownin thefiguresareincreasedby areflectionfactorto includethe

effectof thereflectionof thepressurewaveoff theground.Thevalueusedfor thisreflec-

tion factortypically rangesbetween1.9and2.0.A valueof 1.9wasusedfor all calcula-

tionsin thereport.Consideringtheresultsasawhole,theexpectedagreementbetweenthe

two methodswasfoundto beextremelygood.At Mach3.0and2.0,bothsignatureshape

andpressurelevelagreeverywell. At thehigheraltitudes,,thepressuresignaturehasthe

standardN shapewith two shocks.Thelower altitudesignatureshavemultiplepeaksindi-

catingthatnotall theaircraftcomponentinducedshockshavecoalesced.At Mach3.0and

2.0theThomasmethodconsistentlypredictssignaturesthatareslightly longerthanthose

of theARAP method.TheMach1.2resultsshowlargerdifferencesbetweenthetwo

methods,at leastin termsof themagnitudeof theoverpressure.Thelower altitudesused

atMach 1.2areprobablythecauseof thosedifferences.Thealtitudesselectedat each

Machnumberaredesignedto berepresentativeof potentialoperatingconditionsfor su-

personicaircraft.It wasfoundthattheresultsfrom theThomasprogrambecamemore

sensitiveto thevalueselectedfor thedistancefrom theflight altitudeto theinitial wave-

form astheaircraftaltitudewasreduced.Thisparametercouldbevariedto forcebetter

agreementbetweenthetwomethods.This wasdeterminedto beadeficiencyin overallap-

plicationof theThomasmethod.Fortunately,theseerrorsseemto be limited to anarrow

rangeof flight conditions.Turningto executiontimeconsiderations,it is seenin table6

thattheARAP methodrequiredslightly lesstimein all cases.

In additionto steadyflight overpressures,theextrapolationroutineswill berequiredto

predicttheoverpressuresfor amaneuveringaircraft.For thepurposeof thiswork, thema-

neuverswill berestrictedto flight in two dimensions,i.e. acceleration,climb, andchange

in flight pathangle.Thetwo candidatemethodswerecomparedfor their ability to predict

theoverpressurefor differentvaluesof accelerationrate,flight pathangleandrateof

changein flight pathangle.Theresultsaresummarizedin figure29which showscalculat-

edmaneuveringgroundoverpressureresultsbasedonaMach= 2.0,h = 55,000ft. area

distributioninput.
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Goodagreementwasobtainedfor all accelerationand_ values.Forvaluesatconstant

'y the magnitude of the overpressure agreed well but the length of the signatures did not.

The ARAP results showed that the length of the signature increased slightly with increas-

ing'_. The Thomas results showed a significant decrease in the signature length. Determin-

ing the correct method proved a difficult task. There were no data available in the

literature describing measured signatures for aircraft in steady state climbs. On one hand,

it could be argued that the signature length would shorten due to the change in aspect of

the signature with respect to the ground. On the other hand, the longer propagation dis-

tance created by the positive flight path angle should cause the signature to grow in length.

Since the overpressure magnitude agreed very well, it was decided to leave this question

temporarily unresolved.

The evaluation of the two methods for calculating the ground overpressure did not

leave a clear choice as to which method to employ in the complete overpressure module.

The ARAP method was slightly faster and more consistent over a wider range of Mach

numbers and altitudes. The Thomas method was more flexible and offered the possibility

of expansion to include a method of estimating the overpressure in a focus condition (ref.

25) Based on these choices, it was decided to include both methods in the overpressure

tool.
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IV. Development of the Overpressure Module

This chapter will describe the process required to combine the selected analysis tools

into the complete overpressure module. The integration steps were combined with the de-

velopment of a stand-alone computer program. There were two reasons for creating this

stand-alone program. The first was to satisfy the first goal of this research project. That

goal was to create a unified tool for the analysis of sonic boom overpressure. In order for

that tool to be useful to configuration developers, it must be available for use independent-

ly of the vehicle performance analysis process. Further enhancement of the tool's useful-

ness will be realized through the incorporation of features such as interactive input and

graphical display of results. These features would not be used when computing overpres-

sures during performance analysis. The second reason for developing a stand alone pro-

gram is to provide a means of debugging and validating the new overpressure tool before

it is linked to a performance analysis program. The technique adopted for integrating the

analysis tools was to develop the necessary geometry and data transfer methods while lim-

iting the changes to the individual analysis programs. This modular approach will allow

easy replacement of the analysis tools should superior methods be found at a later date.

For the most part, this technique was successful. At certain points, it was deemed easier to

add a simple modification to analysis tool rather than develop a new subprogram in order

to maintain modularity.

Each of the selected analysis programs were written in the FORTRAN programming

language. Therefore, the natural choice for any programming was to use the FORTRAN

language. In some cases, it was necessary to update the analysis tools to the FORTRAN 77

standard before integrating them. The program was compiled and run using the FOR-

TRAN compiler on three different UNIX architecture computer systems.
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Thestepstaken to develop the overpressure module will be illustrated with the help of

a flow chart for the stand-alone program shown in figure 30. An executive routine had to

be written to provide for reading input flight conditions as well as choices as to what lift

calculation and signature extrapolation methods to use. The decision was made to provide

for both interactive and "batch" mode operations in the program. In the interactive mode,

the program will prompt for the required flight condition and analysis choice inputs and

generate graphical output of area distributions, F functions, and ground pressure signa-

tures. The batch mode is designed to be used when many flight conditions are to be run in

succession and only the final signature data are required. In this mode, all additional input

data are read from the geometry data file. The use of both of these modes will be illustrat-

ed later.

The calculations proceed in a manner similar to that illustrated in figure 1. Area due to

volume and equivalent area due to lift are calculated in the appropriate modules. Each

analysis program is linked to the main program through an interface routine. This routine

handles any necessary geometry conversions and formats the analysis results as required

by the main program. These results are combined into a total area distribution which is

supplied to the selected propagation routine. The ground overpressure is then calculated.

An option is provided to compute overpressures for a series of maneuvers using a fixed

equivalent area distribution. The user then has the option to stop or to continue with a cal-

culation based on new flight conditions.

The following sections will provide details of some of the geometry and data manipu-

lations required at different steps in the analysis process.

Geometry Considerations

The most important step in creating the overpressure module was the development of a

method to generate a consistent set of models for the lift and volume analysis from a sin-

gle geometry format. The geometry format used in the volume analysis contained the most

detail and was therefore considered the best candidate to serve as the geometry base. All

other required geometry data were either derived from this base or generated as described

in the following paragraphs.
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Thefirst analysismoduleto becalledis theareaduetovolumecalculator.Thismod-

ule,derivedfrom thewavedragcomputerprogramdescribedin reference16,providesa

convenientroutinefor readingthegeometrydata.Theoutputfrom thismoduleis anarray

of x valuesandacorrespondingarrayof areasrepresentingtheareadueto volumefor 0_=

0.Theappropriateangleof attackcorrectionsaremadelaterin theprogram.Thegeometry

andareadueto volumedataaretransferredinto storagearraysfor usein repeatcases.

Thesecondanalysisto beperformedis thecalculationof theequivalentareadueto

lift. At thispoint thereisa selectionto bemadebasedonuserinput.Eitherthepurelinear

or themodifiedlinearanalysiscanbeperformed.If themodifiedlinearanalysisis select-

ed,thereis afurtheroptionto includetheinterferencelift. This arrangementof lift analy-

sisoptionswasdesignedto separatethe"quick anddirty" analysismethodsfrom themore

detailedtechniques.In all cases,ageometryconversionroutinewasrequiredto extractthe

requiredmoduleinputsfrom thepreviouslyreadgeometrydata.Although thelinearand

non-linearmethodsusevery similar inputs,thereweresufficientdifferencesto preclude

theuseof asingleconversionroutine.It waspossible,however,to extractthedatafor the

modifiedlinearandinterferenceprogramsusingasingletranslator.

Regardlessof themethodto beused,theproblemthathadto besolvedwasthatof cre-

atinga geometrymodelwhichadequatelysimulatedthemodelsnormallyusedfor lift

analysis.In the simplest of lift analysis models, no attempt is made to account for the pres-

ence of the fuselage. Examining the illustrations of wave drag geometry (figures 3, 16, and

17) reveals that in general, the wing is defined from the side of the fuselage outward. For

simple lift models, all that is required is to replace the fuselage with an appropriate center-

line airfoil. The process of analyzing the lift characteristics of a configuration will often

include an attempt to capture the influence of the fuselage by shaping the inboard wing

airfoils to simulate the fuselage geometry. Figure 31 illustrates two such models. Part a of

the figure shows a relatively simple model of the Mach 2.7 configuration in which only the

centerline airfoil is shaped to simulate the fuselage geometry. A more detailed model for

the Mach 3.0 configuration is shown in part b of the figure. In this model several airfoils

have been inserted between the centerline and wing root airfoils to provide better fuselage
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definition. Techniques were developed to create both simple and more complex lift analy-

sis models from the wave drag geometry data. These will be illustrated with the help of

sketch (h).

thickness form for fuselage
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sketch (h)

fuselage camber line

In the wave drag geometry format, the wing is represented as a series of airfoils. Each

airfoil is specified by the x,y,z coordinates of its leading edge, a chord length, z displace-

ments for the camber line and thickness to chord ratios along that camber line. The latter

two quantities are specified at fixed percent chord locations which are the same for each

airfoil. Part a of the sketch shows a top view of the airfoils describing a wing. The new

centerline airfoil coordinates for the simple wing model (x 0, c0,xt0) are created by extrap-

olating the values from the two innermost airfoils to y=0. The exception to this is if the ex-

trapolation produces an x location which is beyond the nose of the aircraft. In such a case,

the centerline airfoil leading edge is set at x0=0. For both models, the camber line for the
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centerlineairfoil isdeterminedfrom thecamberof thefuselage.

Partb of sketch(h) illustratesthesideview of afuselagewith its camberline.The

pointsxoandXtolocatetheleadingandtrailingedgespointsprojectedfrom therootair-

foil. In thecaseof thesimplewing model,thecamberfor thecenterlineairfoil is takenas

theportionof thefuselagecamberline betweenthesepoints.For themoredetailedmodel-

ling, thecamberline beginsat theconfigurationnose.Eithermethodwill producea

smoothcambersurfacewhenappliedto aconfigurationgeometrywith awell-integrated

wing andfuselage.Thethicknessfor thecenterlineairfoil is neededfor themodifiedlinear

methods.For thesimplemodel,thethicknessratiosfrom theoriginal sideof thefuselage

airfoil areused.As shownin thesketch,theupperandlower contoursfrom thefuselage

dataareusedto definethethicknessfor themoredetailedmodel.Thedataneededto define

therestof thewing geometryweredirectlyavailablefrom thewavedraggeometryinput.

All thatwasnecessarywasto provideameansof extractingthedatain new arrayswhich

couldbeusedby thelift analysisprograms.Figures32and33showbothsimpleandde-

tailedmodelsgeneratedfor theMach2.7 and3.0configurations.Note thatfor theMach

3.0configuration,thenoseof theaircraftrestrictedthelocationof the leadingedgeof the

centerlineairfoil. Theresultsin aslightly oddplanformshape.Theeffectof suchaplan-

form changewill beillustratedlater.

Theprocessof aircraftconfigurationdevelopmentwill generallyyield modelswith

wing andfuselagemodelledseparately.Thusin mostcases,theabovewing geometry

modellingtechniquesmustbeapplied.Occasionally,however,adetailedanalysismodelis

createdin usingwinggeometryalone.Suchis thecaseof theMach3.0configurationillus-

tratedin of figure31.Thismodelaccuratelysimulatesboththevolumeandlift character-

istics(Thefuselagetailcone,fin andnacellesarenot illustratedin thefigure.)The

capabilityto readconfigurationsmodelledin this formatwasincludedin theoverpressure

module.In thiscase,therewasnoneedto generateacenterlineairfoil. Thegeometrycon-

versionmodulesweresetup to recognizeall wing geometryandbypasstheabovemodel-

ling steps.In general,it is notdesiredto includethetail of thefuselagein the lift

calculations.A user-suppliedinput wasselectedasthemethodof identifying thex loca-
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tion at whichto terminatethewingmodel.Comparisonsof the lift resultsfor all wingver-

suswing-bodymodelswill beincludedin theanalysisof thecompletedoverpressure

module.

Thesamegeometrytranslatorwasusedto extractwing geometrydatafor boththe

modifiedlinearandinterferencelift programs.Toavoidunnecessaryconfusion,theinter-

ferencelift programwasmodifiedsothatis usedthesamegeometryvariablenamingcon-

ventionasthemodifiedlinearprogram.The interference program also required the nacelle

geometry as part of its input. In the wave drag geometry format, up to six nacelles or pods

can be specified for each side of the fuselage. The pods are defined by an x,y,z location

and array of cross sectional areas versus x station. Each pod must be of circular cross sec-

tion but may be different from the other pods. However, since the pods are generally used

to describe engine nacelles, they are usually identical except for their locations.

Exceptions to this include cases such as the Mach 3.0 configuration geometry (fig. 3)

which, in addition to engine nacelles, uses small pods to represent boundary layer divert-

ers. The interference lift program is restricted to using only identically shaped pods. This

restriction forced a decision to use only pods representing engine nacelles in the interfer-

ence lift analysis. A user input identified which pods to include in this analysis. An addi-

tional restriction of the interference lift program is that the pod cross sectional areas must

be specified at equally spaced z increments. The geometry translator includes an interpola-

tion scheme for this purpose.

Lift Analysis

Lift and Angle of Attack Calculations

One important operation that was required in the lift analysis routine involved the cal-

culation of total lift and angle of attack. In the original separated process of computing

boom, the lift is computed for a selected angle of attack. When aircraft performance anal-

ysis is being performed, lift is the known quantity and O_must be computed. Both options

were included in the sonic boom module.

In the case of the linear lift method, providing both options was a simple task handled

33



in theinterfaceroutine.Theoutput of the linear program is separated into components due

to camber and flat plate. Both the lift distribution and total lift data are so separated. The

lift distribution is also non-dimensionalized by the total lift. The equation for the total lift

coefficient is

C L = CL.,,,,,_.. + CL._p.tpt,,,. x o_

where CL,,,,_,, and CL,.p,,p_,," are computed by the lift program. This equation can be

solved for either CLOr IX depending on which is required. Once CL and IX have been deter-

mined, the dimensional equivalent area curve can be computed and modified for angle of

attack, as described earlier.

The situation is somewhat more complicated with the modified linear lift analysis. Be-

cause of the non-linear character of the pressure coefficient calculation, it is not possible to

separate the camber, thickness and fiat plate components of lift. Thus, a simple expression

like the one above cannot be obtained. The program is designed to compute the C L for any

IX but required modification to perform the opposite calculation by iteration. Close exami-

nation of the program logic revealed that it was possible to separate the calculation of the

velocity components from the calculation of the pressure coefficients and incremental

forces. The logic for calculating angle of attack for a specified lift is illustrated in the flow

chart in figure 34. The separation of the two calculations results in a significant savings of

execution time over using repeated passes through the entire program to solve for a single

IX. Once the angle of attack has been found, it and the related pressure coefficient data,

along with the necessary geometry information, are used to compute the equivalent area

distribution as described previously,

Interference Lift Increment

Another area in which it proved necessary to modify the lift analysis program was the in-

corporation of the lift increment due to interference. The total force generated by the

shock induced interference is expressed in terms of a normal and axial force components
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whichareinvariantwith angleof attack.Theshapeof the lift equivalentareacurves,how-

ever,areeffectedin themannerpreviouslydescribed.Thissuggestedthatthecalculations

couldbeseparatedasshownin theflow chartin figure34.If interferenceis to beincluded,

theinterferenceforcesarecalculatedbeforethewing lift. Thesecalculationsareper-

formedwithout needof knowingthefinal _. Theinterferencelift incrementis thenadded

to thewing lift in thelift program.In thecaseof findingthe0¢requiredfor agivenlift, the

interferenceincrementis includedin theiterationprocess.For anygivenestimateof 0_,

the interferencelift is calculatedfrom

CL,,. = CN,, X COS0_-CA;, X sina

The total lift coefficient is then computed from

CL,,, = CL,,,g + CL_,,

It is this value that is tested to determine if the proper _ has been found. The angle of at-

tack correction for the interference lift equivalent area distribution is made at the same

time as the corrections to the volume area as described below.

Total Area Distribution

Once the individual components of the equivalent body area distribution have been

calculated by the respective modules, they can be summed into a total distribution for use

in the extrapolation routine. A subroutine was written in the overpressure module to han-

dle this task. At this point in the process, regardless of the input selections, the angle of at-

tack is known. Therefore, final angle of attack corrections are made to the volume area and

interference lift distributions. The corrections to the volume area curve are made by using

the approximate formulas described in an earlier section. The correction for the interfer-

ence lift distribution effects the position where the lift acts through the equation

x" = x x (1 - 13tan00 coso_

After the corrections for angle of attack are complete, the overall length of the total equiv-

alent area distribution can be determined. Because of corrections for angle of attack, and

the displacement of lifting surfaces, each equivalent area distribution may have a different
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length.Thelengthof thetotal areadistributionis determinedby thedifferencebetween

theminimumandmaximumof eachindividual distribution.For thosecomponentswith

lengthslessthanthemaximumlength,thelastareavalueis usedto extendthatdistribution

to themaximumlength.Theindividual areasarethensummedto developthetotal area

distribution.BoththeF functioncalculationroutinein theARAP programandthenear

field signatureroutinein theThomasprogramrequirethatthe inputareadistributionbeat

equallyspacedx intervals.This is insuredby aninterpolationroutinewhich is incorporat-

ed in thetotalequivalentareasummationprocess.

Propagation Modules

Very little integration work was required to join either of the propagation programs to

the overpressure prediction module. The total area distribution and the flight conditions

had to be transferred to the programs via arrays. The original memory allocation scheme

for the ARAP program made extensive use of the FORTRAN construct known as "blank

common." The arrangement of this blank common proved difficult to manage in the inte-

grated system. A new memory allocation structure utilizing named common blocks was

created to solve these difficulties. For cases at high Mach numbers and altitudes, it was

found that the original length of the input total area distribution did not always provide for

an F function with length sufficient to determine the location of the tail shock in either

propagation module. To solve this problem, the area distribution and resulting F functions

were extended by adding a series of maximum equivalent area values at equal increments

beyond the end of the computed total equivalent area distribution.

Both the ARAP and Thomas method contain logic to identify cut-off and focus condi-

tions. For the purposes of this work, the identification of these calculations was all that

was necessary. Both programs were modified to print out the location of such conditions

and then return control to the main program, thus terminating the calculation for that par-

ticular case.

Additional Features

As stated previously, one of the purposes of developing the stand-alone version of the

overpressure module was to provide a method of quickly evaluating the boom characteris-

36



ticsof anevolvingaircraftconfiguration.In order to provide a means of comparing results

with those of other configurations a simple graphical output capability was added to the

stand-alone program. This provides plots of the area distributions, F functions and ground

overpressures which can be viewed on the computer screen or printed on a hard copy de-

vice.

Another important capability added to the stand-alone program involved saving the

data necessary to rapidly repeat certain parts of the analysis. The total lift equivalent area

distribution computed based on a Mach number, altitude and lift condition was stored to

allow for the analysis of several different maneuver conditions or for the comparison of re-

suits from the two extrapolation methods. In addition, Mach number dependent data from

the volume wing lift and interference lift analysis was stored to allow for computing a se-

ries of results at different altitude and lift conditions at a greatly increased execution

speed.

The version of the program suitable for incorporation into a performance program was

only slightly different from the stand-alone version. The executive program became an ex-

ecutive subroutine which would be called using the desired Mach, altitude lift or angle of

attack and maneuver data as parameters. The interactive input mode was eliminated. All

inputs such as choices for lift analysis and extrapolation method were passed to the pro-

gram via a FORTRAN 'namelist" input which is read before the geometry data from a

special input file. The plotting capability was deactivated, but the repeat case logic was re-

tained. This was done to allow rapid evaluation of the boom characteristics at a series of

cruise weight conditions. All of the required code was then stored as a library file which

could be included in the load statement for the selected performance analysis program.
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V. Validation of the Overpressure Module

The purpose of this chapter is to describe the process of validating the new overpres-

sure module. This validation process consisted of two different steps. The first part of the

process involved comparing the results of the new program with previously reported ex-

perimental and theoretical data. The second part of the validation process concentrated on

finalizing answers to some of the questions regarding analysis and modeling methods that

were raised in the earlier sections of this report.

A large body of data exists comparing the results of linear theory sonic boom signature

calculations with flight and wind tunnel experiments. Some of these results are reported in

references 3 and 4. Unfortunately, many of the geometry models used in these studies are

no longer available and hence the resulting comparisons cannot be duplicated. However,

this should not hinder the process of developing a validation of the new overpressure mod-

ule. The body of published comparison data serves well in showing the validity of the lin-

ear theory methods applied. All that remains to be demonstrated is whether the combined

methods can produce results similar to measurements and calculations made previously.

Comparison with Experimental Data

A good source of measured data is the low boom configurations tested in reference 14.

The geometric data for the models used was still readily available. The Mach 2.7 reference

arrow wing geometry described earlier is one of the configurations tested in this report.

The report presents wind tunnel pressure measurements for two reference configurations

and three configurations designed to produce shaped low boom ground pressure signa-

tures. Theoretical comparisons are provided for the near field pressure measured on the

low boom designs. Comparisons were made with the results for low boom arrow wing de-
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sign.This model,shownin figure35, is similar to thepreviouslydescribed reference ar-

row wing configuration. Differences include a longer lifting length and significant

dihedral on the low boom configuration. The forebody of the low boom model is also

shaped to control the nose shock. All of the models tested used uncambered wing geome-

try. The theoretical comparisons in the report used linear theory models. For the purposes

of this report, the modified linear option was selected. The stand alone overpressure pro-

gram was used to calculate the volume and lift equivalent area distribution for the low

boom geometry at the reported test conditions of Mach 2.7, ¢x = 2.033 deg. The results of

these calculations are compared with the data of reference 14 in figure 36, part a. The fig-

ure shows that excellent agreement was obtained, particularly in the region near the con-

figuration nose. The format for these area distribution presentations is slightly different

from earlier figures in that non-dimensional quantities were used. The equivalent length Ie

was determined using the methods presented in reference 14. The pressure data presented

in the reference were measured using a movable probe positioned approximately three

body lengths away from the model in the uniform atmosphere of the wind tunnel. The new

overpressure tool can calculate similar data using the near field wave form method associ-

ated with the Thomas signature extrapolation program. The results of these calculations

are presented in part b of figure 36. The calculated pressure signatures are seen to agree

reasonably well with the experimental results and very well with the theoretical results

presented in reference 14. In reference 14, better agreement with the experiment was ob-

tained by adding a boundary layer thickness correction to the calculated area distribution.

Comparison with Theoretical Data

A comparison with some more recent results was performed using data available from

the authors of reference 26. This paper presented a study of overpressure trends with

weight, altitude, and Mach number for two Mach 2.0 transport configuration models. One

of these configurations represented a vehicle designed to optimize aerodynamic perfor-

mance with little regard to sonic boom considerations. The configuration, shown in figure

37, has certain characteristics in common with the Mach 3.0 vehicle used in other sections

of this report. Reference 26 designates this as Configuration I and this designation will be
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appliedin thisreport.Thesecond(designatedConfigurationII andillustratedin figure38)

wasdesignedto producea shapedpressuresignatureat theground.This overpressure

shape,knownasa"flat top" signature,hasbeenshownto bemoreacceptableto thehu-

manearthat theN wave.In additionto beneficialeffectsof shape,thissignaturemakesit

possibleto achievealowernoseshockAp for a given value of lift. A Ap of 1.0 psf has

long been considered a guideline value for acceptable overland supersonic flight. The flat

top signature shape is obtained through careful tailoring of both the volume and lift distri-

bution of the low boom model. Demonstrating the capability to calculate such signatures

was an important part of validating the new overpressure module.

In reference 26, the overpressure trend curves were generated by first calculating de-

tailed volume, wing and interference lift distributions at fixed altitude, lift and Mach num-

ber. Overpressure trends with altitude were then computed using a feature of the ARAP

program that approximates the variation of the lift distribution with changing CL.The

comparisons presented in this report will focus on duplicating selected baseline total area

distributions and ground pressure signatures. It is believed, however, that the new over-

pressure program is capable of generating more accurate trend data because it includes the

effect of angle of attack on both volume and lift as lift coefficient varies.

Comparisons of the total area distributions and ground pressure signatures for data

generated in the new overpressure program and reference 26 are shown in figures 39

through 42. The first two results are for Configuration I at Mach 2.0 and 1.2 respectively.

The equivalent area distributions were calculated using the modified linear method and in-

cluded interference lift effects. A value of JBYMAX of 30 was used in the lift analysis.

The figures show that excellent agreement was obtained for both the equivalent area distri-

bution and the corresponding ground overpressure and signature shape.

Figures 41 and 42 show similar results calculated for configuration II. In the design of

a low boom configuration, a certain Mach/altitude/weight combination must be selected as

a design point. These parameters are then used in the boom minimization theory to devel-

op a target equivalent area distribution curve. The actual configuration volume and lift dis-

tribution is then developed to closely match this theoretical shape. For configuration II, the
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designpoint selectedwasMach= 2.0,h = 55,000ft, L = 50,000lbs.Theresultsfor this

designpoint areshownin figure41. In additionto theresultsfrom reference26,andthe

presentmethod,curvesshowingtherequiredtheoreticalshapeandcorrespondingboom

signatureareincluded.It canbeseemthetermfiat top signaturederivesfrom thefact that

thesignatureis characterizedby aninitial shockfollowed by aconstantpressuresection.

Thevolumedistributionsshowthat althoughtheoverallagreementwasgood,neitherref-

erence26 resultsnor thepresentmethodresultsagreeexactlywith thetheoreticalmini-

mumshape.Thecorrespondinggroundsignaturesrevealthatbothcalculatedresultsdo

notpredictanidealflat topwaveform. In theareaof theoreticalconstantpressureboth

signaturescontainmanysmallshockrelatedpressurejumps.Therearethreeexplanations

for thisbehavior.Thefirst, atleastfor aportionof thedisagreement,derivesfrom thefact

thatthecalculatedareadistributionsdonotexactlymatchthetheoreticalcurve.Sincethe

designof suchatailoredvolumeandlift distributioninvolvedacomplicatedinteractionof

bothconfigurationshapingandwingdesign,it isnotpossibleto getanexactagreement.In

addition,theintegrationschemefrom reference10usesanintegrationmethodof linked

parabolasto determinetheF- function.Thismethodintroducesdiscontinuitiesin theF

functionwhichcanaffecttheresultingpressuresignature.The third factormaybe that

therearecomponentsof theconfigurationproducingsmallshockwaveswhichdonotcoa-

lescebeforethepressuredisturbancereachestheground.Theimportantfact to realizeis

thatthenewoverpressuremoduleis ableto calculatethe low boomconfigurationover-

pressureshapeto thesamedegreeof accuracyastheoriginal separateanalysisprocesses.

This fact resolvedamajorconcernin thevalidationof thenewtool.

To completethecomparisonswith theresultsof reference26,anoff designflight con-

dition wasanalyzedfor configurationII. Theresultsof thiscomparison,shownin figure

42, againshowedthatgoodagreementwasobtainedwith thenewprogram.Theground

overpressuresignatureindicatesthatthe low boomconfigurationscanproduceundesir-

ableoff designwaveforms.Theeffectsof thesesignatureswill beaddressedfurtherwhen

theoverallflight performanceof thisconfigurationis discussed.
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Lift Analysis Method Selection

The discussion above addressed the overall accuracy of the results obtained using the

new overpressure program. The following sections are devoted to finalizing the answers to

some of the questions raised in evaluating the different analysis tools. This will be done by

using the new program to compute ground overpressure signatures based on complete

configurations. Signatures will be generated using each analysis method or model in ques-

tion. Comparison of these results will be used to make the final judgements.

The first area to be addressed is that of the choice of appropriate lift analysis methods.

Recall that in the section that evaluated the linear and modified linear methods, it was

found that in some cases, it was difficult to determine a clear choice of method based on

the equivalent area distribution results alone. The selection was clarified by computing

ground overpressures for the same flight conditions as used in the lift method study. The

results of the new study are presented in figures 43, 44 and 45 for the reference arrow

wing, the Mach 2.7 and the Mach 3.0 configurations respectively. The pressure signatures

shown were computed using the same Mach, altitude and lift combinations used in the

previous analysis. However, the signatures are based on total equivalent area, not just the

lift area. The comments on the results apply to all these configurations equally. With the

exception of Mach 1.2, the pressure signatures computed with the linear and modified lin-

ear programs seem to agree very well. Both the magnitude of the initial overpressure (Ap)

and the overall length of the signatures are predicted very closely. There are differences in

magnitude and position of intermediate shock-induced pressure changes. For the purposes

of this work, these errors are not deemed important. This is not true, however, for the re-

suits at Mach 1.2. As could be expected, the rapid changes in the slope of the linear area

curve produced substantial differences in the two computed ground signatures. Based on

these results, it can be stated the use of the linear method is perfectly valid above Mach

1.4. Below that Mach number, the modified linear method must be used to insure accurate

results.

A comparison of ground overpressure for results of the study of interference lift effects

was also performed. Again in this study, ground overpressures based on complete configu-
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rationswere calculated using the same Mach, altitude and lift values as the previous stud-

ies. The resulting signatures for the Mach 2.7 and 3.0 configurations are shown in figures

46 and 47. The figures reveal that in all cases, the addition of the interference lift compo-

nent does little to change the initial overpressure or the lengths of the signatures. In gener-

al, the only differences are in the location of the intermediate shocks.

The overall conclusion of these two studies is that for the purposes of computing sonic

boom during performance analysis, it is possible to generate accurate pressure signature

data using linear lift analysis alone. This is not true, of course, at Mach numbers below

1.4.

Lift Analysis Modeling

Another area of the new overpressure module which required further validation was

the difference in the type of model used for the analysis of the lift equivalent area distribu-

tions. In the previous chapter a simple wing alone modeling and a more detailed model in-

cluding a representation of the fuselage were discussed. In addition, an all -wing geometry

representation was introduced. It is the purpose of this section to compare the results of

these different types of models. The comparisons were performed by calculating total

equivalent area distributions and ground pressure signatures using all three types of mod-

elling. The results of these comparisons for the Mach 2.7 and Mach 3.0 configurations are

shown in figures 48 and 49. Two Mach numbers were analyzed for each model. The upper

portion of each figure illustrates the lift equivalent area distributions while the lower

shows the ground pressure signature corresponding to the total area distribution. The lift

equivalent area distributions are shown to more clearly illustrate the difference in the mod-

eling methods. The ground pressure signature results show the effects of the differences

on the overall answer. Because of differences in available all-wing geometries, different

conclusions were drawn from the analyses of the Mach 2.7 and 3.0 configurations. These

conclusions will be presented separately.

Considering figures 31a and 32, which illustrate the different models of the Mach 2.7

configuration, it can be seen that the all-wing model uses only a modified centerline airfoil

to include the fuselage geometry. Because of the close relationship between this model
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andthewing-fuselagemodellingmethod,it wasexpectedthattheresultsfrom thesetwo

modelswouldagreeclosely.Figure48confirmsthatexpectation.Thewing aloneresults

donotpredictanylift off theforwardfuselageandthiscanbeseenin the lift equivalent

areadistributions.However,theresultingcurvesaresimilar in theirothercharacteristics,

particularlytheslopesof thecurves.Thesesimilaritiesresultin groundpressuresignatures

whichagreeremarkablywell. Theconclusiondrawnfrom thisanalysisis thatin linear

analysis,fuselagelift modelingdoesnothaveamajorimpacton thesonicboomoverpres-

sure.Thefuselagemodelis importantin configurationmomentanalysis,however.

Figure49 illustratessimilar lift areaandgroundoverpressuredatafor theMach3.0

configurationmodels.In thiscasehowever,thebestagreementis betweenthewing alone

andthewing/fuselagemodel.Thesmalldifferencethesetworesultsstemsfrom thefact

thatthis is ahighlyblendedconfiguration,with thewing extendingforwardto thenoseof

thefuselage.Neitherof thesetwo modelsagreeverywell with theresultsfrom theall-

wingmodel.Thedifferencesdonotshowverymuchin theMach1.2lift distributions,but

atMach3.0significantslopedifferencesarenoticeable.Thegroundpressuresignaturere-

vealsthatmostof thedifferencesareabsorbedin theextrapolationof thewaveformbased

on thetotalareadistribution.Noseshockoverpressureandsignatureshapechangesare

apparent,however.Thedifferencein the lift analysisresultswereat first thoughtto result

from thebluntednoseandadditionalfuselagethicknesspresentin theall-wing model.

(Comparefigures3lb and33.)Thisraisedconcernoverthevalidity of themethodused

for liftanalysis modelingin thenewoverpressuremodule.A closerexaminationof theall-

wing modelrevealeda significantdifferencein thecenterlinecamberwhencomparedto

thefuselagecamberof thewingbodymodel.Correctingthisdifferenceresultedin avirtu-

ally completeagreementbetweenthethreetypesof modeling.Theconclusionreached

from thiscomparisonstudywasthattheshapeof thecambersurfaceis perhapsthemain

driver of theshapeof thelift areadistributionandcaremustbetakento modelthispartof

theconfigurationgeometryaccurately.

Pressure Signature Extrapolation

The final area for which a question of best method was left unresolved concerned the
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ARAP andThomassignatureextrapolationmethods.In generatingall of thegroundsigna-

turesiUustratedaboveandin thefollowing chapters,thetwo methodscontinuallyexhibit-

edgoodagreementin noseshockoverpressurelevels.Signatureshapeagreementwasalso

good,with theexceptionof casesinvolving non-zeroflight pathangles.Thenearfield

waveform programusedwith theThomasmethodprovedanimportanttool for validating

wind tunnelmeasurements.It wasfound,however,thattheARAPprogramwasaconsid-

erablymorerobustcomputercode.While theThomasprogramwouldoccasionally

"crash"for unknownreasons,theARAP methodcompletedeverycalculation.For this

reason,theARAP optionbecametheoptionof choicein theapplicationof thenewboom

modulein aircraftperformanceprediction.
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VI. Application to Aircraft Performance Analysis

Upon completion of the validation of the new overpressure module using the stand-

alone program version, it was possible to integrate the new program with an existing air-

craft performance program and study the sonic boom characteristics of an aircraft

throughout its flight envelope. It is the purpose of this chapter to provide the details of this

process. The chapter begins with a description of the performance prediction program and

the integration process. The two Mach 2.0 configurations described in reference 26 are

then used to illustrate the application to performance analysis study. This will include a

study of boom signatures along typical supersonic transport flight profiles and at other

points in the aircraft flight envelope. The effects of two dimensional maneuvers typical in

supersonic flight will be illustrated. Finally, the results of a study of climb flight path mod-

ification for reduced ground overpressure will be presented.

Aircraft mission performance analysis involves using a computer program to predict

the flight characteristics and fuel usage of an aircraft for a particular flight or mission. The

program uses a numerical representation of the aerodynamic and propulsion characteris-

tics of the aircraft to solve the two dimensional equations of motion in various flight seg-

ments. These segments include climb, cruise descent and hold segments for the primary

and reserve missions. The vehicle weight at the end of a given segment is used as the start-

ing weight for the next segment. Typically, the parameters of interest are the total distance

that can be flown for a given fuel load (range), the fuel burn or time required for a particu-

lar mission segment, or the fuel required to fly a specified range. The Mach number (or

speed) -altitude schedule that the airplane follows during a flight is termed the flight pro-

file. This profile may be varied to determine the minimum fuel burn or time required to

perform a single or combination of segments. The complete range of Mach number -alti-
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tudecombinationsfor whichtheairplanecanmaintainequilibrium(non-accelerated)

flight withoutviolating structuralor otherconstraintsis knownastheflight envelope.

Therearemanydifferentcomputerprogramsavailablefor thecalculationof aircraft

performance.Theprogramselectedfor thisstudyis describedin reference27.Theprinci-

palreasonsfor usingthisprogramwasthereadyavailabilityof theFORTRANsource

codeandthis author'sfamiliarity with theprogram.Integrationof thesonicboommodule

provedarelativelyeasytask.It wasfirst necessaryto find thepointsin theprogramwhere

anyiterationto solvetheequationof motionfor asinglestepalonga segmentof theflight

profile wascomplete.At thatpointthe lift, Machnumber,altitude,flight pathangle,pitch

andaccelerationratesareknownandcanbepassedto theboommodule.Note thatthelift

valueis passedto theboommoduleratherthantheweight.In equilibriumor cruiseflight,

lift andweightareapproximatelyequal.A slightdifferencein thetwo valuesresultsfrom

theeffectsof flight pathangleandanyanglebetweenthethrustforceandvelocityvectors.

In non-equilibrium(climbingor descending)flight, lift is not equalto weight.It is there-

quiredlift thatis importantto theboomanalysis.Weight,however,is generallyusedin the

measureof aircraftperformance.Themissionsegmentsconsideredin this studyconsisted

of thesupersonic(M > 1.16)portionsof themainmissionclimb, cruiseanddescentseg-

ments.Inputswereaddedto theperformanceprogramto controlwhetheror not theboom

calculationswouldbeperformedandwhetheror not themaneuverdatawouldbeusedin

theextrapolationof thepressuresignatures.Theboommodulewasmodifiedsothatthere-

quiredgeometrydatawerereadon theinitial call to themodule.Thepreviouslydescribed

batchmodeinput is usedto readdatafor selectionof analysismethods.

Flight Profile Analysis

The next section of the chapter will address the calculation of overpressure along typi-

cal flight profiles for the two Mach 2.0 configurations studied in reference 26. As men-

tioned previously, the low boom configuration described in the report was designed to

achieve a flat top pressure signature at M = 2.0, h = 55,000 ft, and L = 550,000 lbs. For the

purpose of comparing the two configurations, a decision was made to try a match the lift

and Mach number at the start of the cruise segment. The cruise altitude would be deter-
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minedbythecruiseoptimizationlogic in theperformanceprogram.This wasachievedby

varyingthetakeoffgrossweightof thetwo configurations.ForconfigurationI, theTOGW

thatresultedin theclosestmatchatthestartof cruisewas585,000lbs.ConfigurationII re-

quiredaTOGWof 590.000lbs.

After determiningthegrossweightrequiredto matchtheselectedstartof cruisecondi-

tions,theboommodulewasactivatedandtheboomoverpressurelevelsandsignature

shapeswerecalculatedto baselineflight profiles.For configurationI, theresultsof these

calculationsareillustratedin figure50andtable7. Theflight profilerepresentedin thefig-

ureis typical of thetypeof profilesusedfor minimumfuelbumto aspecifiedrange.In

theseflight profiles,theaircraftwill accelerateatlow altitudeuntil aconstraintsuchasdy-

namicpressurelimit is reached.On thisprofile,q maxof 1000psf is reachedatM = 1.25.

Theconfigurationthenclimbs andacceleratesat thedynamicpressurelimit until the

cruiseMachnumberis reached.A climb atconstantMachnumberis thenperformeduntil

theoptimumcruisealtitudeis reached.Thecruiseis flown atconstantCt,which forcesa

very gradualclimb duringthecruiseleg.Thedescentis flown at themaximumavailable

lift-drag ratio.Forclarity,only thesupersonicportionsof theflight profile areshownon

thefigure.

In additionto illustratingtheflight profile,figure 50alsoillustratesgroundoverpres-

suresgeneratedat tenspecificpointsalongtheflight profile.Eachof thesignatureshapes

is plottedto thesamescaleto provideanimageof how thesignaturevariesduring the

flight. Table7 presentsthenoseshockoverpressures(Ap) correspondingto thesignatures.

Thesignatureswerecalculatedusingthemodifiedlineartheorywith JBYMAX = 30. In-

terferencelift wasnot included.Thelow altitudeof theinitial climb resultsin very large

valuesof Ap for this segment. Also, the signatures exhibit a large amount of near-field be-

havior. More specifically, the short propagation distance does not allow the shock waves

produced by various aircraft components to coalesce into the familiar N-wave shape. The

result is a signature with a series of small pressure jumps and one large pressure increase.

This behavior continues until the cruise Mach number is reached. As the aircraft climbs to

the start of the cruise point, the signature becomes more far-field and develops the charac-
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teristicN waveshape.Notealsotheincreasingsignaturelengthastheaircraftclimbsand

accelerates.Table7 indicatesthatthenoseshockoverpressurevariesfrom 1.6to 1.1psf as

thealtitudeincreasesandrequiredlift decreasesduringcruise.Thefigurealsoindicates

thatthereis asubstantialdecreasein themagnitudeof a secondarypressurejump in the

signature.Thedescentsegmentshowsthatthesignaturetransitionsfrom anN-waveto a

near-fieldtypesignatureastheaircraftdeceleratesanddescends.Theoverpressuremagni-

tudeisconsiderablylessthanthatdevelopedduring theclimb. This is, of course,dueto

thehigheraltitudesandlowerweightsduringthisportionof theflight.

Thesignaturesshownin figure50werecomputedbasedon asteadystatefight analy-

sis.Theeffectof accelerationandchangingflight pathanglewerenot includedin this first

analysis.Thecalculationswerethenrepeatedwith themaneuveroptionselected.There-

suitsof includingthemaneuvereffectsaresummarizedin table8.This tablecontainsthe

flight pathangle,andtheaccelerationandpitch ratescomputedby theperformancepro-

gramandpassedto thesonicboomanalysismodulefor eachpoint illustratedin figure50.

It canbeseenfrom thetablethatatleastfor supersonictransport-typeaircraft,therateof

changeof bothvelocity andpitchanglearevery low.Themajorityof theclimb andde-

scentsegmentstakeplaceatsmallflight pathangles.Becauseof this,theeffecton both

thenoseshockoverpressureandthesignatureshapesarefoundto bevery small.Table8

containsacomparisonof theoverpressureresults.An exceptiontothesesmalleffectsmay

betheresultof thefocusconditionthatoccursasanaircraftacceleratesthroughMach1.0.

Suchconditionswerenotevaluatedaspartof thisresearchproject.Onereasonfor this is

thedesiretokeepthepresentanalysiswell within theacceptedregionof validity for linear

methods.ThisrestrictedtheMachnumbersto valuesaboveM = 1.2.In addition,accelera-

tion ratestypicalof supersonictransportsresultedin cut-off conditionsfor Machnumbers

lessthan1.15andaltitudesabove35,000feet.Becauseof this nofocusconditionswere

foundat groundlevel in thepresentanalysis.This doesnot meanthatthesonicboomfo-

cusingis not aproblemfor supersonictransportaircraft.Thefocusphenomenoncertainly

requiresfurtherstudy.

Theflight profileanalysiswasalsoperformedfor thelow boomconfigurationof refer-
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ence26.Theflight profile flown was identical to that of the analysis for configuration I.

The results for configuration II are shown in figure 51 and table 9. Overall, the results

show that configuration II achieves significantly lower boom levels than configuration I.

Figure 51 does show that during the minimum fuel climb, a rather strong nose shock is

present. During climb to cruise Mach number, this shock damps out and the fiat top signa-

ture shape is achieved. The flat top signature is maintained throughout the cruise flight de-

spite large lift and altitude variations from the design point. During the descent, a nose and

secondary shock phenomenon appears in the signature. The magnitude of the overpressure

is again greatly reduced from the climb value due to the low weight and higher altitude of

this mission segment.

The above description serves to demonstrate that the new boom module, combined

with an aircraft performance analysis program, can be used to reveal a great deal about the

characteristics of the boom signature during an aircraft's flight. Perhaps most importantly,

it has been revealed that an aircraft with otherwise acceptable cruise boom characteristics

may exhibit excess overpressure levels during certain mission segments. The following

sections of this chapter will describe a method through which the new boom module may

be used to alleviate these problems.

Boom Contours

In order to develop methods to reduce the ground overpressure resulting from a partic-

ular flight profile, it is necessary to study how the boom characteristics vary throughout

the complete flight envelope of a configuration. A unique new capability for performing

such studies was created through the development of the new overpressure module. The

repeat case logic in the stand alone program can be used to rapidly compute ground over-

pressure data for a large number of Mach-altitude flight conditions. These calculations can

be performed at either constant lift or lift varying with Mach number. The results of these

calculations can then be used with a contour generation program to develop contours that

show the variation of overpressure parameters through an aircraft's flight envelope. Such

contours, illustrating the nose shock overpressure levels for the two Mach 2.0 configura-

tions, are shown in figures 52 and 53. For each configuration, contour data are shown for
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constantlift valuesof 550,000and350,000lbs.Theselift valueswerechosenbecause

theycorrespondapproximatelyto therequiredlift atthestartandendof cruisefor the

flight profilespreviouslyillustrated.Additionalcontoursweregeneratedwith thelift vary-

ing with Machnumberto simulatetheeffectof weightchangesduringtheclimb.The

climb fuel requirementsfor theseaircraftvariedbetween30,000and50,000lbs. Incorpo-

ratingsuchavariationof lift did notresultin contourssignificantlydifferentfrom thecon-

toursshownfor theconstant550,000lb. lift case.Becauseof this,it wasdeemed

unnecessaryto includethevaryinglift results.Valid observationsabouttheoverpressure

characteristicsduringbothclimb andcruisesegmentscanbedrawnfrom theconstantlift

contours.

Before analyzing the specific characteristics of each configuration, some general con-

clusion can be drawn from the study of the nose shock Ap contours. The first of these con-

clusions relates to the Ap levels at low altitudes. In all cases studies, the Ap levels begin to

increase rapidly below an altitude of approximately 30,000 ft. In addition, the overpres-

sure at these altitude become less dependent on Mach number and lift and are more a func-

tion of altitude alone. These high overpressures at low altitude are generally not a problem

for supersonic transport aircraft. An exception to this occurs during minimum fuel climb

segments. This will be further discussed in the next section. A second phenomenon com-

mon to all of the contours shown is a rapid increase of overpressure that occurs in an alti-

tude band which varies depending on configuration and lift. This increase is due

principally to the transition from near-field type signatures to far-field N-wave signatures.

This transition is caused by the coalescing of the numerous small shocks in a near-field

signature into a large nose and tail shock. After transition occurs, the Ap values again be-

gin to decrease with altitude due to the attenuation of the atmosphere.

A third interesting phenomenon common to all of the contours has to do with the

Mach number at which a minimum Ap can be achieved. Considering altitudes above

30,000 ft., the minimum Ap seems to occur in the Mach number range of approximately

1.25 to 1.5. This fact has important implication in the study of dual Mach number configu-

rations. These vehicles would be designed to cruise at a low Mach overland for reduced
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boomlevels.Theywould fly at higherMachnumbersoverwater where the overpressure

level is not a problem. Such mixed Mach number flights were not considered as part of

this research.

Some more specific comments can be made about the contours for each configura-

tions. For configuration I, it can be seen that at 550,000 lbs. lift, the target overpressure of

1.0 psf can only be achieved in a very small region of the flight envelope. The relatively

low Mach number and high altitude for this point makes efficient flight at this condition

very difficult. The region of 1.0 psf Ap expands somewhat when the lift is decreased to

350,000 lbs. It is also important to note that at 550,000 lbs., minimum Ap values of only

slightly less than 2.0 are possible at the cruise Mach number of 2.0. Values as low as 1.4

are possible at 350,000 lbs. Compared to the results for the low boom configuration, the

contours of figure 52 appear somewhat irregular. The reason for this is the fact that there

are numerous relatively strong shock waves in the configuration I pressure signature. De-

pending on Mach number, these shocks coalesce at different altitudes causing small in-

creases in the nose shock, Ap. This results in the irregular contour shapes and small

islands of depressed or elevated Ap levels.

The secondary shocks in the signature for configuration II are much smaller. There-

fore, the contours in figure 53 show a steady rate of change with Mach and altitude. Over-

all, the Ap levels of this configuration are much lower than for configuration I. This fact

applies at altitudes above 30,000 ft. It is interesting to note that below this altitude, the

trends for the two vehicles are much the same. At 550,000 lbs, the low boom configuration

can achieve a Ap of 1.0 psf at all Mach numbers. The altitudes required to achieve this are

reasonable from a performance standpoint above Mach 1.2. One of the important facts

gained from figure 53 is that the Ap contours for the low boom configuration are relatively

independent of weight. At 350,000 lbs., there is a larger region where Ap of less than 0.7

psf can be achieved. Also, at this lower weight, the transition altitude has moved beyond

the limits of the flight envelope. However, when considering overpressures greater than

0.9 psf, the two contour plots are quite similar. This is important because it relieves any

need to tailor the cruise flight to meet any boom restrictions.
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It is importantto notethatthetransitionfor low to highAp for this configuration takes

place over a very small altitude range. Above this transition point, the Ap levels are clear-

ly unacceptable for overland flight. The transition behavior is consistent with results from

reference 26. For this configuration, however, the transition altitude is at the high limit of

altitude for efficient cruise flight.

Reduced Boom Climb Profiles

The information contained in the contour plots described above can be used to develop

flight profiles with reduced ground overpressure levels. The flight profile studies previous-

ly presented indicated that the largest overpressure problem concerned the climb segment

of the flight. This section will present the results of an effort to reduce the climb overpres-

sure levels by modifying the Mach-altitude climb schedule. Consider again the Ap con-

tours for lift equal 550,000 lbs. The contours are shown again in figures 54 and 55. In

these figures, several lines have been added to illustrate potential climb schedules. To

more correctly simulate the overpressure contours for climb flight, these contours should

be calculated at varying lift. However, as mentioned previously, the effect of the weight

change on contour shape has been found to be small. The development of a low boom

climb path for configuration I will be illustrated first. Figure 54 shows two climb sched-

ules. The minimum fuel climb path is the one described in the previous flight profile anal-

ysis section. It is clear from the figure that the low altitude used to minimize fuel burn

forces the climb into the boom contour region below 30,000 ft. where excessively high

ground overpressures are developed. To avoid this area, the supersonic portion of the

climb must be flown at higher altitude. How high can be determined from a combination

of the boom contour data and consideration of some practical operational constraints. The

high drag associated with transonic flight generally requires that an aircraft accelerate

through this region at constant or near constant altitude. Given only this constraint, the

boom contour data suggest that the ideal minimum boom climb schedule would force the

configuration to climb subsonically to approximately 48,000 ft. and the accelerate to Mach

1.25 while climbing only slightly. From that point, a slight descent would be required

while accelerating to Much 1.82. A level acceleration to Much 2.0 would complete the
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climb. Thisprofile, however,is notpracticalfor severalreasons.Climbing to avery high

altitudebeforeacceleratingthroughMach1.0putstheaircraft in apositionwheretheratio

of thrustto drag(thrustmargin)is small.This smallthrustmarginresultsin very low ac-

celerationratesandhighfuel consumption.Therequirementfor adescentduringaclimb

segmentis notpracticalfrom thepoint of view of eitherpassengercomfortor air traffic

controlsystemintegration.A muchmorepracticallow boomclimb pathis illustratedin

figure54.Althoughthis pathdoesnotreachthelowestAp value possible, it produce a rel-

atively constant ground overpressure value. The altitude for transonic acceleration is much

more reasonable and a constant climb is maintained. Figure 56 and table 10 present the

ground overpressure levels and signatures calculated for this new climb profile. The signa-

ture schematics in this figure are plotted on the same scale as those in figure 50. While the

signature shapes and lengths do not change a great deal, the magnitude of the overpressure

is dramatically reduced. The effect on the cruise and descent portion of the flight was neg-

ligible in this case. Allowing the performance program to determine a minium fuel path

for the subsonic portion of the flight resulted in a small overall performance penalty for

the low boom climb path. Table 11 shows the climb fuel and time and the overall range for

the two flight profiles. A 1.5 percent range decrease is a small price to pay for an average

25 percent reduction in ,Sp during climb.

The development of low boom climb paths for configuration II offered some more

choices than the effort for configuration I. Examining figure 55 once again indicates that

the minimum fuel climb path is incompatible with maintaining a low boom during this

segment. However, the shape of the boom contours above 30,000 ft. makes the selection

of a practical low boom climb path a fairly easy task. The slope of the lines of constant Ap

correspond closely to climb paths for Mach numbers above 1.3. It is even possible to set a

target maximum boom level for this portion of the climb. Two such climb schedules are

shown in figure 55. The first represents a 1.2 psf. climb and the second a 1.0 psf. maxi-

mum overpressure limit. It can be seen from the figure that the maximum overpressure

limits can not be applied below M = 1.3 if a practical climb profile is to be maintained.

However, the overpressure levels will still be significantly reduced from those of the min-
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imum fuel path.Thegroundoverpressurevaluesandsignaturescalculatedfor thesetwo

pathsarepresentedin figures57 and58andtable12.Thefiguresindicatethattheover-

pressurereductionis duepartly to theincreasedaltitudeandpartly to a changein thesig-

natureshape.In bothcases,therelativestrengthof thenoseshockis greatlyreducedin

comparisonto theresultsof figure51.For the 1.2psf. climb, thesignatureshapeap-

proachestheideal flat top shape.In the 1.0psf.case,arelatively strongsecondaryshock

appearsin thesignature.Also in thiscase,theclimb altitudeis suchthat thecruiseMach

numberis reachedat analtitudegreaterthan thealtitudefor mostefficientcruise.The

cruiseis thereforeflown at constantaltitudeuntil thebestcruiseprofile is intercepted.An

analysisof theeffectsof theselow boompathson theoverallmissionperformancecanbe

conductedwith thehelpof theclimb fuel, timeandrangedatain table 13.Again in these

cases,thesubsonicportionof theclimb is optimizedto reducetheoverall impactonper-

formance.Thepenaltiesin termsof fuel andrangeareseento beslightly greaterthan

thoseassessedto configurationI. Thealtitudesselectedfor bothof theselow boompaths

arehigherthanthealtitudesfor thecorrespondingpathfor configurationI. Thepenalties

associatedwith thisextraaltitudearecompoundedby therelativeaerodynamicinefficien-

cy of thelow boomconfigurationwith respectto configurationI. A 2.0 percent range pen-

alty (for the 1.2 psf path) is acceptable when considering that the undesirable climb

overpressure signatures are eliminated. The acceptability of an additional 3.1 percent

range loss to get to a 1.0 psf limit would have to be more carefully weighed against the ad-

ditional disturbance caused by the increased overpressure.
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VII. Concluding Remarks

A new computer technique for the analysis of transport aircraft sonic boom character-

istics has been developed. This new method combines the previously separate analysis

steps into a single analysis using a single geometry description. The new technique has

been implemented in a stand-alone computer program and has been incorporated as a

module in an aircraft performance analysis program. The process of developing this new

technique has revealed several interesting facts about sonic boom analysis using linear

theory techniques. The application of the new method to aircraft configuration analysis

has provided some important new capabilities and revealed new information about sonic

boom ground signature characteristics during the climb and cruise flight segments of two

conceptual Mach 2.0 transport configurations. The conclusions drawn from the develop-

ment and application of this new tool are summarized below.

Geometry modeling. The geometry format selected for the new overpressure tool was

derived from a wave drag analysis method. It was found that for the analysis of area due to

volume, either a simple circular body or a detailed blended fuselage model could be used.

Sufficiently accurate results can be obtained with the simple model provided the actual

configuration volume distribution is simulated. More detailed models, usually developed

later in the design cycle, provide a link to advanced computational techniques. For the

purpose of the analysis of equivalent area due to lift, an accurate simulation of the fuselage

camber was found to be the most important addition to the data describing the wing geom-

etry.

Lift analysis methods. Three lift analysis methods: linear and modified linear wing lift

and nacelle interference lift, were studied as part of this research. From the point of view
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of thecalculatinggroundpressuresignature,it wasfound thatthelinearwing lift analysis

methodaloneprovidedconsistentresultsat Machnumbersabove1.4.Thegroundpres-

sureresultswerefoundto agreevery well with bothexperimentalandothertheoretical

data.Thelinearresultswerefoundto breakdownat MachnumberslessthanMach 1.4.

Thisproblemwasthoughtto lie morewith theparticularimplementationstudiedthanwith

lineartheoryin general.Themodifiedlinearwing analysisandinterferencelift methods

did not producesignificantlydifferentgroundpressuresignaturesfor mostflight condi-

tions.At someextremesof theflight evelope,thesemethodsmayberequired.Due to the

aboveproblemwith thelinearmethod,themodifiedlineartechniquewasappliedin the

performanceanalysisstudies.

Signature propagation methods. Two methods for propagating the pressure signature

to the ground were studied. The methods were found to be very similar with the exception

of cases of non-zero flight path angle. The Thomas method offered features of a uniform

atmosphere propagation method and possible extension to calculating focus overpres-

sures. The ARAP computer code proved to be the more robust of the two methods.

Boom contour generation. The development of a stand-alone program based on the

new overpressure prediction tool will provide aircraft configuration developers with a

method of rapidly analyzing the boom characteristics of a current design and comparing

those characteristics with the results from other vehicles. Interactive input, graphical out-

put, and rapid repeat case logic are features of the new program that make this possible.

One other important feature of the stand-alone program is the ability to generate contours

of sonic boom signature data for the aircraft flight evelope. Nose shock overpressure con-

tours were generated as part of this report, but this capability could be extended to other

important parameters. This contour information provides a new capability to examine the

variation of boom parameters throughout the aircraft's flight evelope rather than at just a

few selected points. Contour plots for the two Mach 2.0 configurations revealed that for a

given weight, the minimum ground overpressure occurred between Mach 1.25 and 1.5.

Application to aircraft performance analysis. The new overpressure prediction tool

was integrated into an aircraft performance program to provide a capability of analyzing
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thevariationof overpressuresignaturecharacteristicsonanaircraft'sflight profile.Climb,

cruiseanddescentsignatureswerestudiedfor two Mach2.0configurations.Typicalmini-

mumfuel climb profilesfor theseconfigurationswerefoundto produceexcessiveApval-

uesattheground.Includingtwo dimensionalmaneuverparametersin theanalysisdid not

significantlyaltertheoverpressurelevelor thesignatureshapefor thetwo configurations

studied.Thecapabilityof generatingboomcontours,coupledwith subsonicfuel bumop-

timization,wasusedto developnewclimb profilesfor thetwo configurations.Usingthese

newprofilesreducedthecalculatedclimb Apvaluesto levelsnearthecruiseresults.These

levelscouldbeobtainedwith acceptablepenaltieson theclimb fuelandoverallrange.
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Table1- Comparisonof execution times required by volume analysis methods.

Method Time required for analysis (sec)

nx=60 nx=100

Mach 3.0 configuration

1 - original 9.1 14.5
1 - modified 1.8 2.3

2 2.6 3.4

3 13.1 19.8

Math 2.7 configuration

1 - original 11.6 18.7
1 - modifed 1.5 1.9

2 2.2 2.8

3 12.9 19.7
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Table2 - Comparisonof executiontimesrequiredby lift analysismethodsfor varyingval-
uesof JBYMAX.

Mach 2.7 Configuration

Method Mach JBYMAX Time (sec.)

Linear 1.4 20 14.0

" " 15 4.9

" " 10 1.2

Mod. Linear " 40 517.6

.... 30 172.1

" " 20 38.7

Linear 2.7 40 20.0

.... 30 6.9

" " 20 1.8

Mod. Linear " 64 331.4

" " 50 132.5

" " 40 58.7

" " 30 23.1

" " 20 7.0

Mach 3.0 Configuration

Method Mach JBYMAX Time (sec.)

Linear 1.4 20 13.3

" " 15 4.6

.... 10 1.2

Mod. Linear " 40 493.7

.... 30 164.7

.... 20 38.1

Linear 3.0 40 15.5
.... 30 5.3

.... 20 1.3

Mod. Linear " 70 349.0

" " 50 100.7

" " 40 45.9

.... 30 18.3

.... 20 6.9
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Table3. - Angleof attack,JBYMAX, andexecutiontimedatafor thecomparisonof the
linearandmodifiedlinearlift analysismethods.

Reference Arrow Wing

Linear Modified Linear

Mach Alpha Time JBYMAX Alpha Time JBYMAX

1.2 2.58 2.9 10 2.70 458.7 30

1.7 1.54 35.7 30 1.65 95.2 30

2.2 1.04 14.7 30 1.09 44.7 30

2.7 .78 8.2 30 .83 25.7 30

Mach 2.7 Cambered Arrow Wing

1.2 3.62 2.6 10 2.66 409.5 30

1.7 .81 29.6 30 .94 86.3 30

2.2 -.60 12.7 30 -.52 39.9 30

2.7 -1.28 6.9 30 -1.17 23.9 30

Mach 3.0 Configuration Wing

1.2 3.07 2.5 10 2.44 378.1 30

1.8 1.05 24.3 30 1.11 69.7 30

2.4 .14 10.3 30 .10 31.2 30

3.0 -.38 5.4 30 -.37 18.0 30
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Table4 - Comparisonof executiontimesrequiredby theinteferenceanalysismethodfor
varyingvaluesof JBYMAX.

Mach 2.7 Configuration

Maeh JBYMAX Time (see.)

1.4 24 30.1

" 20 22.6

" 10 10.7

2.7 50 38.3

" 40 26.7

" 30 19.1

" 20 13.4

Mach 3.0 Configuration

Maeh JBYMAX Time (see.)

1.4 29 64.7

" 20 31.1

" 10 13.4

3.0 50 43.4

" 40 29.0

" 30 20.5

" 20 14.5
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Table5. - Angleof attack,JBYMAX, andexecutiontimedatafor thecomparisonof the
wing lift aloneandwing + interferencelift results.

Wing alone Wing + interference

Mach 2.7 configuration

Mach Lift Altitude Alpha Time Alpha Time

(lbs.) (ft.) (deg.) (sec.) (deg.) (sec.)

1.4 400,000 40,000 .08 143.9 -.80 180.8

1.4 400,000 60,000 2.82 2.68

1.4 600,000 40,000 .40 .27

1.4 600,000 60,000 5.72 5.58

2.7 400,000 50,000 -1.84 23.4 -1.91 41.5

2.7 400,000 70,000 .33 .25

2.7 600,000 50,000 - 1.17 - 1.24

2.7 600,000 70,000 2.14 2.07

Mach 3.0 configuration

1.4 350,000 40,000 0.05 134.9 .00 214.1

1.4 350,000 60,000 2.77 2.43

1.4 550,000 40,000 1.21 .87

1.4 550,000 60,000 5.01 4.67

3.0 350,000 50,000 -.73 17.8 -.87 38.8

3.0 350,000 70,000 .62 .48

3.0 550,000 50,000 -.25 -.39

3.0 550,000 70,000 1.89 1.75
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Table6. - Comparisonof requiredexecutiontimesfor theARAP andThomassignature
extrapolationmethods.Mach3.0Configuration,L= 550,000lbs.

Mach

3.0 65

" 55

" 45.

" 35

2.0 65

" 55

" 45

" 35

1.2 55

" 45

" 35

" 25

Altitude

time (sec.)

ARAP Thomas

000. 13.5 16.0

000. 12.9 15.8

000. 13.2 15.2

000. 13.1 14.3

000. 4.0 4.5

000. 3.8 4.5

000. 3.7 4.5

000. 2.8 4.1

000. 3.9 5.6

000. 3.9 5.4

000. 3.8 4.1

000. 3.8 4.5

Maneuvering results: Mach = 2.0, h = 55,000 ft.

a/g=.5 3.8 4.5

T= 10. deg. 3.8 4.6

q?= 5. deg/sec 3.7 4.4

a/g=.5, T= 10., _,= 5. 3.7 4.7
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Table7. - Mach,altitude,lift andnoseshockoverpressureresultsfor ConfigurationI on

the baseline flight profile. TOGW = 585,000 lbs.

Mach Altitude(ft) Lift (Ibs) Ap

1.2 21,300. 566,500 3.48

1.4 26,500. 562,900 3.00

1.6 32,500. 559,500 2.53

1.8 37,500. 556,500 2.44

2.0 42,000. 553,100 2.23

2.0 57,600. 549,700 1.60

2.0 68,800. 308,000 1.10

1.8 68,800. 307,000 1.07

1.5 63,500. 307,000 .98

1.2 56,500. 307,000 1.31

Table 8. - Data for the comparsion of Ap results with and without the effects of two dimen-

sional maneuvers. Mach 2.0 Configuration I, TOGW= 585,000 lbs., baseline

flight profile.

Mach Altitude a/g "y "_ Ap Ap
w/man, w/o man.

1.2 21,300. .085 0.39 -0.001 3.43 3.48

1.4 26,500. .087 2.46 -0.001 2.85 3.00

1.6 32,500. .100 2.44 0.003 2.43 2.53

1.8 37,500. .102 2.04 -0.004 2.41 2.44

2.0 42,000. .033 5.52 0.312 1.98 2.23

2.0 57,630. .000 0.00 0.000 1.60 1.60

2.0 68,800. .000 0.01 0.000 1.10 1.10

1.8 68,800. -.097 0.00 0.000 1.07 1.07

1.5 63,500. -.088 - 1.36 -0.002 0.99 0.98

1.2 56,500. -.079 - 1.88 -0.004 1.29 1.31

67



Table9. - Mach,altitude,lift andnoseshockoverpressureresultsfor ConfigurationII on
thebaselineflight profile. TOGW= 590,000lbs.

Mach

1.2

1.4

1.6

1.8

2.0

2.0

2.0

1.7

1.5

1.2

Altitude(f t)

21 300.

26 500.

32 500.

37 500.

42 000.

53 800.

63 200.

61100.

56,700.

51,300.

Lift (lbs) Ap

569,100 2.70

564,900 2.34

561,100 1.92

557,7O0 1.68

554,300 1.49

551,600 1.03

340,000 .74

339,800 .74

339,700 .76

339,500 .90

Table 10. - Mach, altitude, lift and nose shock overpressure results for Configuration I on

the reduced boom flight profile. TOGW = 585,000 lbs.

Mach Altitude(ft) Lift (Ibs) Ap

1.2 40,000. 560,400 2.12

1.4 41,900. 556,900 1.67

1.6 42,500. 554,100 1.92

1.8 43,400. 551,500 2.00

2.0 44,200. 548,900 2.08

2.0 57,700. 545,900 1.60

2.0 68,800. 308,000 1.10

1.8 68,800. 308,000 1.06

1.5 64,100. 307,700 .96

1.2 57,100. 307,600 1.29

Table 11. - Comparison of climb fuel and time and overall range for minimum fuel and re-

duced boom climb profiles. Configuration I, TOGW= 585,000 lbs.

Climb fuel (lbs.)

Climb time (min.)

Overall range (n.mi.)

Minimum Reduced

fuel boom

30,900 34,800

15.30 14.58

7,134 7,027
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Table12.- Mach,altitude,lift andnoseshockoverpressureresultsfor ConfigurationII on

the reduced boom flight profiles. TOGW = 590,000 lbs.

Mach

1.2

1.4

1.6

1.8

2.0

2.0

2.0

1.7

1.5

1.2

Altitude(ft)

41,900.

44,200.

45,900.

47,800.
49 300.

54 100.

63 200.

61 800.

57 200.

52 000.

Apmax = 1.2 psf

Lift (Ibs) Ap

559,400 1.23

554,700 1.17

551,000 1.17

547,700 1.18

544,600 1.17

543,500 1.01

340,400 .75

340,200 .73

340,100 .76

339,900 .88

Apmax = 1.0 psf

Mach Altitude(ft) Lift (Ibs) Ap

1.2 46,800. 553,500 1.08

1.4 49,900. 547,000 .97

1.6 51,800. 542,500 .97

1.8 53,500. 538,700 .99

2.0 55,000. 535,200 .99

2.0 63,200. 340,500 .75

1.7 62,100. 340,300 .72

1.5 57,500. 340,200 .74

1.2 52,800. 340,000 .87

Table 13. - Comparison of climb fuel and time and overall range for minimum fuel and re-

duced boom climb profiles. Configuration II, TOGW= 590,000 lbs.

Minimum

fuel

Climb fuel (lbs.) 33,400

Climb time (min.) 13.7

Overall range (n.mi.) 5,027

Reduced boom

APmax= 1.2 APmax = 1.0

40,965 47,400

15.0 16.3

4,926 4,766
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(a) Mach2.7configuration
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Figure31.- Examplesof numericalmodelsusedin configurationlift analysis.
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(a) Wingonly model

(b) Wingandfuselagemodel

Figure32.- Wing lift analysisnumericalmodelsgeneratedfrom the
Mach2.7configurationgeometrydescription.
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(a)Wing only model

(b) Wingandfuselagemodel

Figure33.- Wing lift analysisnumericalmodelsgeneratedfrom the
Mach3.0 configurationgeometrydescription.
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Figure 38. - Mach 2.0 configuration 11from reference 26.
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computed with and without interference lift.

Math 2.7 configuration geometry.
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Mach 3.0 configuration geometry.
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Figure 48. - Comparison of lift equivalent area distributions and complete ground pressure
signature results computed with different wing modeling methods.

Mach 2.7 configuration, L = 600,000 lbs., h = 50,000 ft.
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Figure 49. - Comparison of lift equivalent area distributions and complete ground pressure
signature results computed using different wing modeling methods.

Math 3.0 configuration, L = 500,000 lbs., h = 50,000 ft.
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Mach 2.0 configuration I.
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Mach 2.0 configuration II.
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